Bhiwadi
+918076792323

'lead acid cells'

Items tagged with 'lead acid cells'

product image
Amaron Powerstack cells

Amaron Powerstack cells are a type of valve-regulated lead-acid (VRLA) battery designed for industrial applications. Here\\'s an overview of the Amaron Powerstack cells and their specifications: Key Features: Modular design for easy installation and maintenance High-performance VRLA technology for reliable power supply Low maintenance and self-discharge rate Wide operating temperature range (-20°C to 50°C) Compliance with international standards (IEC, UL, and CE) Types of Amaron Powerstack Cells: Amaron Powerstack 2V 200 Ah Cell: Capacity: 200 Ah Voltage: 2V Dimensions: 103 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 300 Ah Cell: Capacity: 300 Ah Voltage: 2V Dimensions: 123 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 400 Ah Cell: Capacity: 400 Ah Voltage: 2V Dimensions: 143 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 500 Ah Cell: Capacity: 500 Ah Voltage: 2V Dimensions: 163 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 600 Ah Cell: Capacity: 600 Ah Voltage: 2V Dimensions: 183 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 800 Ah Cell: Capacity: 800 Ah Voltage: 2V Dimensions: 203 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 1000 Ah Cell: Capacity: 1000 Ah Voltage: 2V Dimensions: 223 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 1200 Ah Cell: Capacity: 1200 Ah Voltage: 2V Dimensions: 243 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 1500 Ah Cell: Capacity: 1500 Ah Voltage: 2V Dimensions: 263 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years Amaron Powerstack 2V 1800 Ah Cell: Capacity: 1800 Ah Voltage: 2V Dimensions: 283 x 206 x 355 mm Material: Lead-Calcium alloy Terminal Type: M8 x 25 mm Copper Design Float Life: 12 Years **Amaron Powerstack 2V 200

Send Message
product image
Battery Cells In Badh Khalsa Sonipat

Battery Cells are the fundamental building blocks of batteries. They convert chemical energy into electrical energy through electrochemical reactions. Each cell typically consists of an anode, a cathode, an electrolyte, and a separator. Types of Battery Cells Lead-Acid Cells Components: Lead dioxide (cathode), sponge lead (anode), sulfuric acid (electrolyte). Characteristics: Voltage: Typically 2V per cell. Rechargeable: Yes (flooded, AGM, or gel). Applications: Automotive batteries, UPS systems, and backup power. Nickel-Cadmium (NiCd) Cells Components: Nickel hydroxide (cathode), cadmium (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Power tools, emergency lighting, and some medical devices. Nickel-Metal Hydride (NiMH) Cells Components: Nickel hydroxide (cathode), hydrogen-absorbing alloy (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Hybrid vehicles, rechargeable batteries for consumer electronics. Lithium-Ion (Li-ion) Cells Components: Lithium cobalt oxide or lithium iron phosphate (cathode), graphite (anode), lithium salt in organic solvent (electrolyte). Characteristics: Voltage: 3.6V to 3.7V per cell. Rechargeable: Yes. Applications: Smartphones, laptops, electric vehicles, and energy storage systems. Lithium Polymer (LiPo) Cells Components: Similar to Li-ion but use a polymer electrolyte. Characteristics: Voltage: 3.7V per cell. Rechargeable: Yes. Applications: Drones, RC vehicles, and portable devices due to lightweight and flexibility. Alkaline Cells Components: Zinc (anode), manganese dioxide (cathode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Household devices, flashlights, and remote controls. Zinc-Carbon Cells Components: Zinc (anode), manganese dioxide (cathode), ammonium chloride (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Low-drain devices like clocks and toys. Components of Battery Cells Anode: The negative electrode where oxidation occurs. Cathode: The positive electrode where reduction takes place. Electrolyte: A medium that allows ionic movement between the anode and cathode. Separator: A barrier that prevents direct contact between anode and cathode while allowing ionic flow. Characteristics of Battery Cells Voltage: The electric potential difference; varies by cell type. Capacity: Measured in Ampere-hours (Ah), indicates how much charge a battery can store. Energy Density: Amount of energy stored per unit volume or weight, typically measured in Wh/kg. Cycle Life: Number of charge/discharge cycles before capacity drops significantly. Self-Discharge Rate: Rate at which a battery loses its charge when not in use. Applications of Battery Cells Consumer Electronics: Smartphones, laptops, tablets. Automotive: Electric vehicles, hybrid vehicles, starting batteries. Industrial: Forklifts, backup power for servers and telecommunications. Renewable Energy: Solar energy storage systems and grid storage. Portable Devices: Cameras, drones, and power tools. Conclusion Battery cells are essential components in various applications, providing energy storage and supply. Understanding the types, characteristics, and applications helps in selecting the right battery for specific needs. Always consider factors like voltage, capacity, and intended use when working with batteries.

Send Message
product image
Amaron Quanta 12V 7Ah lead acid battery

The Amaron Quanta 12V 7Ah lead acid battery is a sealed maintenance-free battery designed for various applications. Here are its specifications and features: Key Specifications: Nominal Voltage: 12 Volts ** Rated Capacity**: 7 Ah Dimensions: 151mm x 65mm x 100mm Battery Type: VRLA (Valve Regulated Lead Acid) Weight: 2.5 kg Terminal Type: M6 Cycle Life: 500 cycles at 80% DOD Float Life: 5-7 years at 25°C Key Features: Designed for UPS Applications: The battery is designed for UPS applications and provides a long life through proven AGM technology. Complies with Various Quality and Safety Standards: The battery complies with various quality and safety standards, ensuring reliable performance and safety. Low Maintenance: The battery is maintenance-free, eliminating the need for regular checks and maintenance. High Reliability: The battery is designed to provide high reliability and long life, making it suitable for critical applications. Product Details: Reliable and Powerful Energy Solution: The Amaron Quanta battery is a reliable and powerful energy solution for a wide range of applications. Long-Lasting Performance: The battery provides long-lasting performance, making it suitable for applications that require continuous power supply. Wide Operating Temperature Range: The battery operates within a wide temperature range of -20°C to 50°C, making it suitable for various environments. Compliance with International Standards: The battery complies with international standards such as IEC, ISO, and CE, ensuring reliable performance and safety. Warranty and Support: Warranty Period: 2 years Support: Amaron provides dedicated support for its products, ensuring prompt assistance in case of any issues. Applications: UPS Systems: The battery is suitable for UPS systems, providing reliable power backup during outages. Telecom Systems: The battery is suitable for telecom systems, providing reliable power supply for critical communication equipment. Renewable Energy Systems: The battery is suitable for renewable energy systems, providing reliable power storage for solar and wind power systems. Other Applications: The battery is also suitable for other applications such as alarm systems, emergency lighting, and security systems.

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Repairing And Maintaining UPS

Repairing And Maintaining UPS (Uninterruptible Power Supply) batteries is crucial for ensuring the reliability and longevity of the power backup system. Here’s a detailed overview of UPS battery maintenance and repair practices. UPS Battery Types Lead-Acid Batteries: Valve-Regulated Lead Acid (VRLA): Maintenance-free and sealed, suitable for most UPS systems. Flooded Lead Acid: Requires periodic maintenance and water topping. Lithium-Ion Batteries: Increasingly used due to longer life and higher efficiency but may require specific handling protocols. Maintenance Practices Regular Inspections: Visual Check: Inspect batteries for physical damage, corrosion, or leaks. Look for swelling or bulging in case of lead-acid batteries. Connections: Ensure all terminals and connections are tight and free of corrosion. Cleaning: Clean battery terminals with a mixture of baking soda and water to remove corrosion. Rinse with clean water and dry thoroughly. Battery Testing: Voltage Checks: Regularly measure the voltage of each battery to identify weak cells. Load Testing: Perform load tests to ensure the battery can deliver the expected capacity under load conditions. Temperature Monitoring: Monitor battery temperature, especially in environments with high heat, as excessive temperatures can affect battery performance and lifespan. Electrolyte Level (for Flooded Batteries): Check and maintain the electrolyte levels in flooded lead-acid batteries. Top up with distilled water as necessary. Battery Health Monitoring: Use battery management systems (BMS) for advanced monitoring of battery health, state of charge, and state of health. Repair Practices Identifying Faults: Common issues include short-circuited cells, sulfation, and capacity loss. Use diagnostic tools to identify problems. Replacing Individual Batteries: If a battery within a pack fails, replace only the faulty battery if it’s compatible. However, it's often recommended to replace all batteries in a series to ensure uniform performance. Equalization Charging (for Flooded Batteries): Periodically perform equalization charging to balance the charge across all cells and prevent sulfation. Reconditioning: Some lead-acid batteries can be reconditioned through a process of controlled charging and discharging to restore capacity. This is not always successful and should be done by professionals. Battery Replacement: When batteries reach the end of their lifespan (typically 3-5 years for lead-acid), replace them with new ones. Ensure that replacements meet the manufacturer's specifications. Best Practices for Maintenance Documentation: Keep records of inspections, tests, and replacements to track battery performance over time. Environmental Conditions: Maintain an optimal environment for batteries—ideally, a cool, dry place free from excessive humidity and temperature fluctuations. Professional Servicing: Consider engaging professionals for complex repairs or maintenance tasks, especially for large or critical UPS systems. Training: Train personnel on proper handling, maintenance, and safety procedures related to UPS batteries. Conclusion Regular maintenance and timely repairs of UPS batteries are essential for ensuring the reliability of power backup systems. By implementing best practices, monitoring battery health, and addressing issues promptly, you can prolong the life of your UPS batteries and enhance overall system performance. If you have specific questions or need further details on any aspect, feel free to ask!

Send Message
product image
Battery

Amaron batteries are well-known for their performance and reliability in various applications, including automotive, UPS systems, and renewable energy setups. Here’s a comprehensive overview of charging Amaron batteries, covering methods, parameters, and best practices. Charging Amaron Batteries 1. Charging Methods: Constant Current (CC) Charging: The charger supplies a constant current until the battery reaches a predefined voltage. Commonly used for lead-acid batteries, ensuring a safe and efficient charge. Constant Voltage (CV) Charging: After reaching the target voltage, the charger maintains that voltage while the current decreases. This method is suitable for maintaining battery charge without overcharging. Smart Chargers: These chargers automatically adjust voltage and current based on the battery's state. They often include features like temperature compensation and multi-stage charging. 2. Charging Parameters: Voltage: For lead-acid Amaron batteries, the charging voltage typically ranges from 2.25V to 2.40V per cell. For a 12V battery (6 cells), this translates to about 13.5V to 14.4V. Current: The charging current should be set to 10-30% of the battery's capacity (C-rate). For example, a 100Ah battery should be charged at 10A to 30A. Temperature Compensation: Adjust the charging voltage based on the ambient temperature to avoid damage. Generally, for every degree Celsius above 25°C, reduce the charging voltage by 0.005V per cell. 3. Charging Stages: Bulk Charge: The initial phase where maximum current is applied to quickly charge the battery. This stage continues until the battery reaches approximately 70-80% of its capacity. Absorption Charge: The charger maintains a constant voltage, allowing the current to taper off as the battery approaches full charge. This phase ensures the battery reaches full capacity without overcharging. Float Charge: A lower voltage is maintained to keep the battery fully charged without overcharging. This is essential for maintaining the battery in a ready state for immediate use. Best Practices for Charging Amaron Batteries: Use the Right Charger: Always use a charger specifically designed for the type of battery you are charging (lead-acid, AGM, etc.). Avoid Deep Discharge: Regularly charge the battery to prevent deep discharges, which can shorten battery life. Monitor Temperature: Ensure the charging environment is within the recommended temperature range (typically 15°C to 25°C). Regular Maintenance: Periodically check the battery's state of charge and electrolyte levels (if applicable). Clean terminals and connections to ensure efficient charging. Follow Manufacturer Guidelines: Always refer to the specific charging instructions provided by Amaron for the particular battery model. Conclusion Proper charging of Amaron batteries is vital for maximizing their lifespan and performance. By following the recommended charging methods, parameters, and best practices, users can ensure that their batteries operate efficiently and reliably. If you have specific models in mind or need further details, feel free to ask!

Send Message
product image
12v 150ah

The Amaron Quanta 12V 150Ah battery is a Sealed Maintenance Free (SMF) VRLA (Valve Regulated Lead Acid) battery designed for UPS applications. It has a capacity of 150Ah and operates at 12 volts. The battery comes with a warranty of 24 months. Key Features: PPCP Containers with low permeability ensures that there is no water loss Lead Acid Storage Type @ C20 Rating Proven AGM technology ensures maintenance-free characteristics Reinforced end walls improve impact resistance Thicker grids and higher separator compression prolong life expectancy Inter cell weld between cells provide a high reliable, low resistance current path A unique heavy duty corrosion-resistant alloy for positive grids, to increase cyclic life in tropical environments Radgrid profile provides lower internal resistance and superior high discharge performance Instacharge a patented paste recipe for excellent charge acceptance Low self-discharge rates for extended storage periods Conforms to International standards – JIS8702C Design float life of 10 years Clean and Sleek looks Specifications: Capacity: 150Ah Type: SMF, VRLA (Sealed Maintenance Free, Valve Regulated Lead Acid) Volts: 12V Warranty: 24 months Weight: 46 kgs (approx.) Dimensions: 406168283 in mm (approx.) Applications: Data Centers Online UPS Inverter Systems Banks & Financial Markets Network Operation Centers Semiconductor Manufacturing Power Generation Plants Hospital & Testing Laboratories Portable Testing & Measuring Instruments Vending machines & Weighing Scales Office Automation Equipment Fire Alarm & Security Systems Electronic PABX Systems Telecommunication Systems Process Instrumentation & Control Railway Signalling Power Plants & Substations Benefits: High performance and reliability Low maintenance cost Long lifespan Environmentally friendly Warranty and Support: Warranty period: 24 months Customer support: Available from the manufacturer and authorized dealers

Send Message
product image
12v160ah

The Amaron Quanta 12V 160Ah battery is a Sealed Maintenance Free (SMF) VRLA (Valve Regulated Lead Acid) battery designed for UPS applications. It has a capacity of 160Ah and operates at 12 volts. The battery comes with a warranty of 24 months. Key Features: PPCP Containers with low permeability ensures that there is no water loss Lead Acid Storage Type @ C20 Rating Proven AGM technology ensures maintenance-free characteristics Reinforced end walls improve impact resistance Thicker grids and higher separator compression prolong life expectancy Inter cell weld between cells provide a high reliable, low resistance current path A unique heavy duty corrosion-resistant alloy for positive grids, to increase cyclic life in tropical environments Radgrid profile provides lower internal resistance and superior high discharge performance Instacharge a patented paste recipe for excellent charge acceptance Low self-discharge rates for extended storage periods Conforms to International standards – JIS8702C Design float life of 10 years Clean and Sleek looks Specifications: Capacity: 160Ah Type: SMF, VRLA (Sealed Maintenance Free, Valve Regulated Lead Acid) Volts: 12V Warranty: 24 months Weight: 52 kgs (approx.) Dimensions: 445168283 in mm (approx.) Applications: Data Centers Online UPS Inverter Systems Banks & Financial Markets Network Operation Centers Semiconductor Manufacturing Power Generation Plants Hospital & Testing Laboratories Portable Testing & Measuring Instruments Vending machines & Weighing Scales Office Automation Equipment Fire Alarm & Security Systems Electronic PABX Systems Telecommunication Systems Process Instrumentation & Control Railway Signalling Power Plants & Substations Benefits: High performance and reliability Low maintenance cost Long lifespan Environmentally friendly Warranty and Support: Warranty period: 24 months Customer support: Available from the manufacturer and authorized dealers

Send Message

Still searching for
lead acid cells?