Bhiwadi
+918076792323

'lithium salt'

Items tagged with 'lithium salt'

product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
9PX Lithium-ion UPS

The Eaton 9PX Lithium-ion UPS is designed for mission-critical applications, offering an extended battery life of 8 to 10 years. It features power ratings from 1 to 6 kVA, advanced ABM technology for battery longevity, and flexible configurations for both rack and tower setups. Key Specifications: Power Ratings: 1 kVA to 6 kVA Battery Type: Lithium-ion with 8-10 years life expectancy Form Factor: Rackmount and tower options Connectivity: Multiple external battery module options Warranty: 5 years on electronics and internal batteries Key Features: ABM Technology: Extends battery service life by up to 50% Remote Management: Capable of remote monitoring and management Compact Design: Space-saving design suitable for various environments Output: Pure sine wave output for sensitive equipment Performance and Reliability: Run Time: Varies based on load; designed for high availability Noise Level: Operates quietly, suitable for office environments

Send Message
product image
Battery Cells In Badh Khalsa Sonipat

Battery Cells are the fundamental building blocks of batteries. They convert chemical energy into electrical energy through electrochemical reactions. Each cell typically consists of an anode, a cathode, an electrolyte, and a separator. Types of Battery Cells Lead-Acid Cells Components: Lead dioxide (cathode), sponge lead (anode), sulfuric acid (electrolyte). Characteristics: Voltage: Typically 2V per cell. Rechargeable: Yes (flooded, AGM, or gel). Applications: Automotive batteries, UPS systems, and backup power. Nickel-Cadmium (NiCd) Cells Components: Nickel hydroxide (cathode), cadmium (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Power tools, emergency lighting, and some medical devices. Nickel-Metal Hydride (NiMH) Cells Components: Nickel hydroxide (cathode), hydrogen-absorbing alloy (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Hybrid vehicles, rechargeable batteries for consumer electronics. Lithium-Ion (Li-ion) Cells Components: Lithium cobalt oxide or lithium iron phosphate (cathode), graphite (anode), lithium salt in organic solvent (electrolyte). Characteristics: Voltage: 3.6V to 3.7V per cell. Rechargeable: Yes. Applications: Smartphones, laptops, electric vehicles, and energy storage systems. Lithium Polymer (LiPo) Cells Components: Similar to Li-ion but use a polymer electrolyte. Characteristics: Voltage: 3.7V per cell. Rechargeable: Yes. Applications: Drones, RC vehicles, and portable devices due to lightweight and flexibility. Alkaline Cells Components: Zinc (anode), manganese dioxide (cathode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Household devices, flashlights, and remote controls. Zinc-Carbon Cells Components: Zinc (anode), manganese dioxide (cathode), ammonium chloride (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Low-drain devices like clocks and toys. Components of Battery Cells Anode: The negative electrode where oxidation occurs. Cathode: The positive electrode where reduction takes place. Electrolyte: A medium that allows ionic movement between the anode and cathode. Separator: A barrier that prevents direct contact between anode and cathode while allowing ionic flow. Characteristics of Battery Cells Voltage: The electric potential difference; varies by cell type. Capacity: Measured in Ampere-hours (Ah), indicates how much charge a battery can store. Energy Density: Amount of energy stored per unit volume or weight, typically measured in Wh/kg. Cycle Life: Number of charge/discharge cycles before capacity drops significantly. Self-Discharge Rate: Rate at which a battery loses its charge when not in use. Applications of Battery Cells Consumer Electronics: Smartphones, laptops, tablets. Automotive: Electric vehicles, hybrid vehicles, starting batteries. Industrial: Forklifts, backup power for servers and telecommunications. Renewable Energy: Solar energy storage systems and grid storage. Portable Devices: Cameras, drones, and power tools. Conclusion Battery cells are essential components in various applications, providing energy storage and supply. Understanding the types, characteristics, and applications helps in selecting the right battery for specific needs. Always consider factors like voltage, capacity, and intended use when working with batteries.

Send Message
product image
Microtek inverter In Bawal

Microtek inverters are popular for their reliability and efficiency in providing backup power solutions. Here are some key points: Types: Available in pure sine wave, square wave, and modified sine wave models to suit different needs. Applications: Used for home, office, and industrial backup power systems. Features: Energy-efficient, low maintenance, with features like digital display, smart charging, and battery management systems. Compatibility: Works well with various battery types, including lead-acid and lithium-ion. Durability: Built to withstand power fluctuations and extreme conditions. Microtek is known for its durable and cost-effective inverters, widely used across India and other regions.

Send Message
product image
Luminous Ups

The Luminous LD30KH-PRO is a high-performance Inverter designed to provide reliable backup power for homes, offices, and small commercial setups. It is a part of Luminous' Pure Sine Wave Inverter series, offering high efficiency and stable power supply to sensitive equipment like computers, refrigerators, air conditioners, and other appliances. Here are the key features and specifications of the Luminous LD30KH-PRO: Key Features: Power Capacity: 30 kVA (Kilovolt-Ampere) – It is designed to support large power loads, making it suitable for medium to large residential, commercial, or industrial applications. Pure Sine Wave Output: Provides clean and stable output voltage, ensuring that sensitive equipment (like computers, air conditioners, and medical equipment) operates without issues, such as noise or voltage fluctuations. High Efficiency: The inverter operates with high efficiency, which reduces power loss and ensures that more of the battery's energy is used to power connected appliances. Advanced Microprocessor Technology: The inverter uses a microprocessor-based design to ensure high performance, protection, and reliability. It optimizes charging and discharging cycles, as well as load management. User-Friendly LCD Display: It comes with an intuitive LCD display that shows important information such as battery status, power usage, input and output voltage, and fault conditions. This helps users easily monitor and manage the system. Wide Input Voltage Range: The inverter operates with a wide input voltage range, which helps it perform well under varying input conditions. This feature helps protect connected equipment from power surges and fluctuations. Multiple Protection Mechanisms: Built-in protection features include overload protection, short-circuit protection, deep discharge protection, and battery reverse polarity protection, which ensures the safety of the connected equipment. Battery Compatibility: The Luminous LD30KH-PRO is compatible with both lead-acid and lithium-ion batteries, giving users flexibility depending on their preferences for battery technology. Smart Battery Management: The inverter comes with intelligent battery management to optimize battery performance, extending their lifespan and ensuring safe charging and discharging cycles. Compact and Reliable Design: Designed with a compact form factor and a durable build, the inverter is ideal for both indoor and outdoor installations and can be used for both backup power and off-grid applications. Applications: Residential Homes – For providing backup power for large appliances like air conditioners, refrigerators, lighting, and electronics. Small and Medium Businesses – For ensuring uninterrupted power supply to computers, servers, and other essential equipment. Commercial Use – Ideal for large offices, small industries, and workshops. Rural/Off-Grid Areas – Can be used in places with frequent power outages or no access to the grid, providing a reliable power solution. Specifications Summary: Rated Capacity: 30 kVA Output Type: Pure Sine Wave Input Voltage: 120V – 300V (depending on model) Charging Current: Adjustable (depends on load) Display: LCD with detailed status updates Battery Compatibility: Compatible with lead-acid and lithium-ion batteries

Send Message
product image
VERTIV UPS

The Liebert APM is a modular, scalable, and flexible Uninterruptible Power Supply (UPS) system from Vertiv (formerly Emerson Network Power). It's designed to provide reliable power protection for a wide range of applications, including IT, industrial, healthcare, and telecommunication environments. The Liebert APM series comes in various power ratings, with the range you mentioned being 30 kW - 300 kW, as well as the smaller 1 to 25 kVA units, offering high flexibility for different power requirements. Key Features of the Liebert APM Series: Modular Design: One of the standout features of the Liebert APM UPS system is its modular design. This allows users to scale the system based on their current needs and future expansion. The modular units can be added incrementally, making it highly adaptable. This modular approach allows for easy maintenance and upgrades without having to replace the entire UPS unit. High Efficiency: The Liebert APM delivers high efficiency, typically achieving up to 95% or more under normal operating conditions. This efficiency helps reduce operational costs and energy consumption. It also features Eco-mode operation, which optimizes energy savings when operating in non-critical situations without compromising protection. Compact and Flexible: Despite its modular nature, the Liebert APM system has a compact design that fits easily into most data centers and industrial setups, where space can often be at a premium. It can be configured for 1-phase or 3-phase power supply, offering flexibility for different types of loads and systems. Scalable Power: The Liebert APM is available in a range from 1 kVA to 300 kVA, which makes it suitable for small server rooms to large data centers. The system allows for easy scalability by adding additional power modules as needed to meet growing demands. Flexible Battery Configurations: The UPS system supports a variety of battery configurations, allowing for customization based on your runtime requirements. You can select from different battery types, including VRLA (Valve-Regulated Lead-Acid) and lithium-ion batteries. Advanced Monitoring and Management: Liebert APM comes with Intelligent Monitoring that provides real-time data on the UPS’s performance, such as input/output voltage, battery status, and efficiency. It supports both local and remote monitoring, ensuring that technicians can be alerted to issues before they become critical problems. The system can be integrated with network management systems (NMS) for centralized control across multiple units. Dual Input Capability: Some models of the Liebert APM offer dual input power sources, providing redundancy for critical applications. This feature ensures that the system remains operational even if one power input fails. Fast Response Time: The Liebert APM offers a fast transfer time (typically in the milliseconds), ensuring that sensitive equipment is protected even during brief power outages or voltage fluctuations. Applications: Data Centers: Providing reliable, scalable power protection for server rooms and IT infrastructure. Industrial: Protecting critical manufacturing equipment and automated systems from power interruptions. Healthcare: Ensuring medical equipment, including imaging devices, lab instruments, and patient monitoring systems, remain operational during power outages. Telecommunications: Keeping communication systems up and running to ensure continuous operation of vital network infrastructure. Benefits: Scalability: The ability to scale up or down as required, which is a huge benefit for growing businesses or changing environments. Reduced Total Cost of Ownership (TCO): With high efficiency and modularity, the Liebert APM reduces energy consumption and minimizes the cost of maintenance. Reliability: Known for providing excellent protection against power issues, including surges, spikes, and outages. Customization: Supports different configurations and battery options to meet specific needs, offering flexibility across various industries. Models & Power Ratings: Small Power Ratings: For smaller environments or edge computing setups, Liebert APM models ranging from 1 kVA to 25 kVA offer robust protection without being overly complex. Large Power Ratings: For larger industrial or data center applications, the 30 kW to 300 kW versions provide scalable power protection to ensure high availability for critical operations.

Send Message
product image
Vertiv 10kVA UPS

A Vertiv 10kVA UPS (Uninterruptible Power Supply) is a reliable power backup system designed to provide uninterrupted power to critical equipment, such as servers, networking devices, and other sensitive electronic systems. The 10kVA rating indicates that the UPS can handle loads of up to 10,000 volt-amperes, which is typically suitable for medium-sized office setups or small data centers. Vertiv (formerly Emerson Network Power) is known for offering high-quality, efficient, and reliable UPS solutions that help prevent downtime and protect equipment from power surges, outages, and other electrical disturbances. Here are some key features you might find in a Vertiv 10kVA UPS: Power Capacity: 10 kVA (or approximately 8 kW for resistive loads), which can support multiple servers or network equipment. Efficiency: Many Vertiv UPS systems are designed with energy efficiency in mind, minimizing energy loss and operating costs. Battery Type: Typically uses either VRLA (Valve Regulated Lead Acid) or Lithium-Ion batteries, providing long-lasting backup time during power interruptions. Form Factor: These systems may come in both rack-mounted or tower configurations, depending on space requirements. Scalability: Some Vertiv UPS units allow for modular expansion, meaning you can add additional units or battery packs to increase power capacity. Monitoring and Control: Advanced models often come with digital monitoring features, allowing remote monitoring of UPS status, battery health, and power consumption via web interfaces or software. Surge Protection and Isolation: Protects your sensitive equipment from power surges, voltage spikes, and electrical noise. Maintenance Bypass: Many UPS models, including 10kVA versions, have maintenance bypass switches that allow you to service the unit without interrupting power to connected devices. Vertiv offers various UPS models in this range, so if you’re looking to purchase, it's important to check specifications for exact features, runtime, and compatibility with your equipment.

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message

Still searching for
lithium salt?