Bhiwadi
+918076792323

'overall system performance'

Items tagged with 'overall system performance'

product image
Amaron Car Battery

Amaron is also known for manufacturing high-quality car batteries. Their car batteries are designed to provide reliable performance, longer life, and are known for being maintenance-free. Here's a breakdown of the key features of Amaron Car Batteries: Key Features of Amaron Car Batteries: Maintenance-Free: Most of Amaron's car batteries are maintenance-free, meaning you don't need to top up the water level regularly, making them hassle-free to use. Long Life: Amaron batteries are built for longevity. They use advanced technology in their manufacturing process to ensure they last longer than standard car batteries. High Cranking Power: Amaron batteries are designed to offer high cranking power, which is important for starting your car, especially in extreme weather conditions. Durability: Amaron batteries are built to withstand the challenges of extreme heat and cold, making them durable and reliable in all kinds of climates. Vibration Resistance: The batteries are designed to be resistant to vibrations, which is important for vehicles that are driven on rough roads. Better Performance: Amaron batteries are equipped with advanced lead-calcium alloy technology, improving the overall performance and reliability of the battery. Warranty: Amaron offers a good warranty on its car batteries, generally ranging from 24 months to 48 months, depending on the model. Types of Amaron Car Batteries: Amaron Go: A popular line for regular cars and entry-level vehicles, offering solid performance at a competitive price. Amaron Flo: Known for its low-maintenance and enhanced performance features, ideal for newer cars with more advanced electrical systems. Amaron Pro: Designed for more premium cars or those with additional electrical demands, providing extra cranking power and extended life. Amaron Quanta: A high-performance option for commercial vehicles and larger applications. Benefits: Wide Range: Amaron has a broad selection of car batteries that suit various vehicle models and sizes. Reliable Performance: Their batteries provide consistent performance and are known for being able to withstand heavy use. Low Self-Discharge Rate: These batteries maintain charge longer, even when the car isn't used for an extended period.

Send Message
product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
Amaron Quanta 12V 18Ah Battery

The Amaron Quanta 12V 18Ah is a type of sealed lead-acid (SLA) battery, commonly used for backup power applications, such as in UPS systems, inverters, and other critical power supply systems. Here's a detailed breakdown of its specifications and features: 1. General Overview Brand: Amaron Quanta Battery Type: Sealed Lead-Acid (SLA) Battery Voltage: 12 Volts (V) Capacity: 18 Ampere-Hours (Ah) 2. Key Features Longer Battery Life: Amaron Quanta batteries are designed for long-lasting performance and high reliability. They typically offer a good lifespan, especially in applications with a low depth of discharge (DOD). Maintenance-Free: The battery is sealed, so it doesn’t require regular maintenance (e.g., adding water). Vibration Resistance: These batteries are designed to withstand vibrations, making them ideal for use in environments like telecoms, solar power, and UPS systems. Wide Operating Temperature: They can operate in a wide range of temperatures, typically from 0°C to 40°C, making them versatile for use in different climates. 3. Technical Specifications Voltage: 12V (Nominal) Capacity: 18Ah (Ampere-Hours) Dimensions: Length: 181 mm Width: 77 mm Height: 167 mm Weight: Around 5.2 to 5.5 kg (varies slightly based on exact model) Charge Voltage: 14.4V to 15.0V (during charging) Discharge Voltage: Typically 10.5V to 11.0V for complete discharge Self-discharge: Less than 3% per month at 25°C 4. Applications UPS Systems: The 12V 18Ah battery is widely used in smaller uninterruptible power supplies (UPS) for providing backup power to sensitive electronics. Inverters: It can also be used in small-scale inverters to provide backup power to homes or offices. Telecommunications: In telecom applications, these batteries can be used for backup power to critical network equipment. Solar Energy Storage: Sometimes used in small-scale solar energy systems for storing energy for use during off-sunlight hours. 5. Battery Design Features Valve Regulated Lead-Acid (VRLA): The Amaron Quanta battery uses VRLA technology, which means the battery is sealed and uses a valve to release gas in case of overpressure. Deep Cycle: Designed for regular deep discharge cycles, making it suitable for power backup applications where batteries frequently discharge. Absorbent Glass Mat (AGM): Some models use AGM technology, where the electrolyte is absorbed in a fiberglass mat, allowing the battery to be spill-proof and leak-proof. 6. Charge/Discharge Characteristics Charging: Amaron Quanta batteries typically use a constant voltage charge, with a float charge voltage of around 13.5V to 13.8V. Discharge: The battery can typically discharge down to around 10.5V under load, but frequent deep discharges can reduce the battery's overall lifespan. 7. Advantages Longer Service Life: Typically offers a long life when maintained and used properly, making it a cost-effective option for long-term use. Reliable Performance: Known for reliability in maintaining charge over time, especially in demanding environments. Environmentally Friendly: Sealed and maintenance-free design minimizes risks associated with acid leakage and spills. 8. Maintenance Maintenance-Free Design: As mentioned, the battery is sealed, so it doesn't require regular maintenance like adding distilled water. However, regular inspection for corrosion on terminals and proper charge maintenance is recommended. Charging Recommendations: Always charge the battery in accordance with the manufacturer’s recommendations. Overcharging or undercharging can significantly reduce the battery’s lifespan. 9. Warranty Amaron Quanta batteries often come with a warranty that covers defects in material or workmanship, which typically lasts for 1 to 2 years depending on the seller and country-specific terms. 10. Compatibility Compatible Devices: The Amaron Quanta 12V 18Ah battery is commonly used in small UPS systems, solar power applications, and other critical systems where consistent backup power is required. Charging Systems: Can be used with most standard 12V chargers designed for SLA or AGM batteries. Conclusion The Amaron Quanta 12V 18Ah battery is an ideal solution for users looking for a reliable, low-maintenance, and efficient power backup option in smaller systems. It is widely used in UPS systems, inverters, and telecommunications applications where it can provide critical backup power when needed.

Send Message
product image
5 kW solar system installed at nooh school

Universal Power team has installed a 5 kW solar system at nooh school Key Details of the 5 kW Solar System Installation at Nooh School: Solar Power Generation: A 5 kW system typically generates around 20-25 kWh per day depending on sunlight hours and weather conditions. Annual Energy Production: The system could produce around 7, 300 to 9, 125 kWh annually, which can cover a significant portion of the school\'s energy needs. System Components: Solar Panels: Typically, 15-20 panels with a capacity of around 250W-330W each. Inverter: A 5 kW inverter is used to convert the DC power produced by the panels into AC power. Mounting Structure: The solar panels are mounted on the roof or ground, depending on the school\'s infrastructure. Grid Connection: The system is likely connected to the grid, allowing excess energy to be fed back into the grid via net metering, helping reduce electricity costs for the school. Benefits for Nooh School: Cost Savings: The school will benefit from reduced electricity bills by offsetting its grid power usage with solar energy. Sustainability: The system will contribute to a reduction in carbon emissions, helping the school be more environmentally responsible. Educational Opportunity: The solar installation can serve as a live example for students, providing them with a practical demonstration of renewable energy technology. Maintenance: The system requires minimal maintenance, with occasional cleaning of the panels to ensure optimal performance. Panel Lifespan: Solar panels generally last around 25-30 years, with a slight decline in efficiency over time. Inverter Lifespan: Inverters typically last around 10-15 years before needing replacement. Conclusion: The 5 kW solar system installed by Universal Power Team at Nooh School will provide long-term benefits, including reduced electricity costs, environmental sustainability, and educational opportunities for students to learn about solar energy. If more detailed information is needed, contacting Universal Power Team or the school would provide the specifics of the installation.

Send Message
product image
Maintenance Tips for UPS Systems and Batteries​

Maintaining your Uninterruptible Power Supply (UPS) system and its batteries is crucial for ensuring reliable performance and extending their lifespan. Here are some essential maintenance tips: 1. Regular Inspection Visual Checks: Inspect the UPS and batteries for any signs of physical damage, leaks, or corrosion. Connections: Ensure that all connections are secure and free from dust and corrosion. 2. Battery Maintenance Battery Testing: Regularly test the batteries for capacity and performance. Use a battery tester to check voltage and load. Clean Terminals: Keep battery terminals clean and free from corrosion. Use a mixture of baking soda and water to clean any corrosion, and ensure terminals are dry before reconnecting. Check Electrolyte Levels: For flooded lead-acid batteries, check the electrolyte levels regularly and top up with distilled water as needed. 3. Environmental Considerations Temperature Control: Keep the UPS and batteries in a cool, dry environment. High temperatures can reduce battery life significantly. Ventilation: Ensure proper ventilation around the UPS to prevent overheating. Avoid placing it in enclosed spaces without airflow. 4. Regular Testing Self-Test: Perform regular self-tests to ensure the UPS is functioning correctly. Most UPS systems have a built-in self-test feature. Load Testing: Conduct load tests periodically to ensure the UPS can handle the required load during a power outage. 5. Firmware and Software Updates Keep Software Updated: Regularly check for and install firmware updates for your UPS. This can improve performance and security. Monitoring Software: Use UPS monitoring software to track performance metrics and receive alerts for any issues. 6. Battery Replacement Follow Manufacturer Guidelines: Replace batteries according to the manufacturer\'s recommendations, typically every 3-5 years for lead-acid batteries. Dispose of Batteries Properly: Follow local regulations for the disposal of batteries to ensure environmental safety. 7. Load Management Avoid Overloading: Ensure that the total load connected to the UPS does not exceed its rated capacity. This can lead to overheating and reduced battery life. Balanced Load: Distribute the load evenly across all outlets to prevent any single outlet from being overloaded. 8. Documentation Keep Records: Maintain a log of maintenance activities, battery replacements, and any issues encountered. This can help in troubleshooting and planning future maintenance. 9. Professional Maintenance Schedule Professional Inspections: Consider having a qualified technician perform regular inspections and maintenance, especially for larger UPS systems. 10. User Training Educate Staff: Train staff on the proper use and maintenance of the UPS system, including how to respond in case of a power outage.

Send Message
product image
10KVA UPS

The Vertiv™ Liebert® GXE 6000-10000VA UPS is part of the Liebert GXE Series, which provides line-interactive power protection with advanced features, making it an ideal solution for small and medium-sized businesses, IT infrastructure, and critical equipment in need of reliable power backup. The Liebert GXE UPS offers features like Automatic Voltage Regulation (AVR), extended battery support, efficient performance, and compact design. Here are all the key details and specifications for the Vertiv™ Liebert® GXE 6000-10000VA UPS: Vertiv Liebert GXE 10000VA UPS (10kVA) Power Rating: 10kVA / 10000VA Output Power: 6000W to 8000W Input Voltage: 170V - 280V Output Voltage: 230V ± 10% Waveform: Simulated Sinewave (or Pure Sinewave for specific models) Battery Type: Sealed Lead-Acid (SLA) / VRLA Battery Capacity: Typically 12V, 18Ah or 24Ah (with external battery options) Charging Time: 4-6 hours for a full recharge Backup Time: 10-40 minutes depending on load and battery configuration Form Factor: Tower or Rackmount Interfaces: USB/Serial, SNMP (optional) Additional Features: AVR, Smart Battery Management, LCD Display, Overload Protection, Alarms, External Battery Support Key Features: Topology: Line-Interactive – This topology offers good protection and ensures that your equipment receives stable power during fluctuations, such as brownouts or overvoltages, without using battery power unnecessarily. Power Rating: 6kVA to 10kVA (6000VA to 10000VA) – Suitable for medium to large-sized IT infrastructure, servers, networking equipment, and other critical applications that need consistent and reliable power. Output Power: 6kVA (6000VA) models typically provide 3600W - 4800W of output power. 10kVA (10000VA) models provide 6000W - 8000W of output power, depending on the specific model and configuration. Input Voltage Range: 170V - 280V (wide input voltage range) – Provides protection from both high and low voltage fluctuations. Output Voltage: 230V ± 10% – Standard output voltage suitable for most business and IT applications. Waveform Type: Simulated Sinewave – In line-interactive mode, the output waveform is simulated sinewave. However, the UPS is designed to handle sensitive loads well. Automatic Voltage Regulation (AVR): The Liebert GXE UPS comes with AVR that corrects voltage fluctuations without switching to battery power, reducing battery wear and extending the overall life of the system. Battery Type: Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) batteries – Commonly used for UPS systems due to their reliability and low maintenance. Battery Capacity: 12V batteries, with 18Ah, 24Ah, or higher capacity depending on the model and configuration. Extended Battery Support: The UPS can be connected to additional battery packs for longer backup runtimes if needed. Charging Time: Typically, the battery recharge time is around 4-6 hours for a full charge from a discharged state. Backup Time (Runtime): Backup time varies depending on load. For example: At 50% load, the runtime could range from 30 minutes to 1 hour. At full load, the backup time may range from 10-20 minutes, depending on the model and load. External Battery Packs can extend runtime significantly for longer power outages. Form Factor: Tower or Rackmount options are available, making the Liebert GXE adaptable for different environments, such as server rooms or small data centers. Rackmount models are designed for 19-inch racks and are ideal for installations in IT environments. Cooling: Fan-assisted cooling for efficient thermal management. Interfaces & Monitoring: USB/Serial Communication Ports for connection with monitoring and management software. SNMP Slot: Provides optional SNMP (Simple Network Management Protocol) support for remote monitoring and management. LCD Display: Many models include an LCD screen that shows real-time UPS status, load, battery condition, input/output voltage, and other important information. Smart Battery Management: Ensures that the batteries are efficiently charged and maintained, extending the life of the battery bank. Advanced battery diagnostics can help predict failures and improve overall UPS reliability. Overload Protection: Provides protection against equipment overload and ensures that the system shuts down or enters bypass mode in the event of a fault condition. Audible Alarms: Alarms provide real-time alerts for conditions like battery low, overload, fault conditions, and input/output abnormalities. Green Features: Energy-Efficient: Offers high energy efficiency to reduce operational costs. ECO Mode: In certain conditions, the system can operate in ECO mode to provide further energy savings, reducing electricity consumption.

Send Message
product image
Repairing And Maintaining UPS

Repairing And Maintaining UPS (Uninterruptible Power Supply) batteries is crucial for ensuring the reliability and longevity of the power backup system. Here’s a detailed overview of UPS battery maintenance and repair practices. UPS Battery Types Lead-Acid Batteries: Valve-Regulated Lead Acid (VRLA): Maintenance-free and sealed, suitable for most UPS systems. Flooded Lead Acid: Requires periodic maintenance and water topping. Lithium-Ion Batteries: Increasingly used due to longer life and higher efficiency but may require specific handling protocols. Maintenance Practices Regular Inspections: Visual Check: Inspect batteries for physical damage, corrosion, or leaks. Look for swelling or bulging in case of lead-acid batteries. Connections: Ensure all terminals and connections are tight and free of corrosion. Cleaning: Clean battery terminals with a mixture of baking soda and water to remove corrosion. Rinse with clean water and dry thoroughly. Battery Testing: Voltage Checks: Regularly measure the voltage of each battery to identify weak cells. Load Testing: Perform load tests to ensure the battery can deliver the expected capacity under load conditions. Temperature Monitoring: Monitor battery temperature, especially in environments with high heat, as excessive temperatures can affect battery performance and lifespan. Electrolyte Level (for Flooded Batteries): Check and maintain the electrolyte levels in flooded lead-acid batteries. Top up with distilled water as necessary. Battery Health Monitoring: Use battery management systems (BMS) for advanced monitoring of battery health, state of charge, and state of health. Repair Practices Identifying Faults: Common issues include short-circuited cells, sulfation, and capacity loss. Use diagnostic tools to identify problems. Replacing Individual Batteries: If a battery within a pack fails, replace only the faulty battery if it’s compatible. However, it's often recommended to replace all batteries in a series to ensure uniform performance. Equalization Charging (for Flooded Batteries): Periodically perform equalization charging to balance the charge across all cells and prevent sulfation. Reconditioning: Some lead-acid batteries can be reconditioned through a process of controlled charging and discharging to restore capacity. This is not always successful and should be done by professionals. Battery Replacement: When batteries reach the end of their lifespan (typically 3-5 years for lead-acid), replace them with new ones. Ensure that replacements meet the manufacturer's specifications. Best Practices for Maintenance Documentation: Keep records of inspections, tests, and replacements to track battery performance over time. Environmental Conditions: Maintain an optimal environment for batteries—ideally, a cool, dry place free from excessive humidity and temperature fluctuations. Professional Servicing: Consider engaging professionals for complex repairs or maintenance tasks, especially for large or critical UPS systems. Training: Train personnel on proper handling, maintenance, and safety procedures related to UPS batteries. Conclusion Regular maintenance and timely repairs of UPS batteries are essential for ensuring the reliability of power backup systems. By implementing best practices, monitoring battery health, and addressing issues promptly, you can prolong the life of your UPS batteries and enhance overall system performance. If you have specific questions or need further details on any aspect, feel free to ask!

Send Message
product image
Vertiv Data Center Ups

Vertiv is a well-known provider of critical digital infrastructure and continuity solutions, including uninterruptible power supplies (UPS) for data centers. They offer a variety of UPS systems designed to meet the needs of different types of data centers, from small edge installations to large enterprise facilities. Here are some of the main types of UPS systems offered by Vertiv: 1. Single-Phase UPS Vertiv Liebert GXT5: A compact UPS designed for small to medium data centers, offering high efficiency and power density. Vertiv Liebert PSI5: A line-interactive UPS that provides reliable power protection for small IT environments. 2. Three-Phase UPS Vertiv Liebert EXS: A modular UPS solution that offers scalability and flexibility for medium to large data centers. Vertiv Liebert APM: A highly efficient UPS designed for large enterprise environments, providing advanced features and high availability. Vertiv Liebert NXC: A robust UPS solution designed for mission-critical applications, offering high efficiency and reliability. 3. Modular UPS Vertiv Liebert DPA: A modular UPS system that allows for incremental capacity upgrades, making it ideal for growing data centers. 4. Flywheel UPS Vertiv Liebert FPC: A flywheel energy storage system that provides short-term backup power and is often used in conjunction with traditional UPS systems for enhanced reliability. 5. Lithium-Ion UPS Vertiv Liebert APS: A UPS system that utilizes lithium-ion battery technology for longer life and reduced maintenance compared to traditional lead-acid batteries. 6. Eco-Friendly Solutions Vertiv also focuses on energy-efficient and environmentally friendly solutions, such as systems that comply with various sustainability standards and regulations. Key Features Scalability: Many Vertiv UPS systems are designed to be modular, allowing for easy expansion as data center needs grow. Efficiency: High-efficiency designs help reduce energy costs and improve overall sustainability. Advanced Monitoring: Vertiv offers solutions with integrated monitoring capabilities, allowing for real-time performance tracking and proactive maintenance alerts. Redundancy Options: Many systems support N+1 or 2N configurations for enhanced reliability. Applications Enterprise Data Centers: Large facilities requiring high availability and redundancy. Edge Computing: Solutions designed for smaller, distributed data centers. Telecommunications: Power protection for critical telecom infrastructure. Healthcare: Ensuring uptime for critical medical equipment and data. When choosing a UPS system, it's essential to consider factors such as load requirements, runtime needs, efficiency, and the specific environment in which the UPS will operate. For the most accurate and tailored solutions, it's advisable to consult with a Vertiv representative or a certified distributor.

Send Message
product image
Amaron Batteries Apc Ups In Sector 53 Noida

Using Amaron batteries with APC (American Power Conversion) UPS (Uninterruptible Power Supply) systems can provide reliable backup power. Here’s a comprehensive overview of how to pair them effectively: APC UPS Overview Purpose: Provides emergency power during outages and stabilizes voltage fluctuations. Types: Ranges from consumer models to enterprise-level systems. Key Features: Automatic Voltage Regulation (AVR): Stabilizes voltage. Surge Protection: Protects connected devices from surges. LCD Display: Displays battery status, load level, and other metrics. Amaron Batteries Overview Type: Typically lead-acid (both conventional and maintenance-free) or possibly lithium-ion for some applications. Voltage Options: Commonly available in 12V configurations, suitable for UPS systems. Capacity: Various capacities (e.g., 46Ah, 100Ah, 150Ah), depending on the UPS model and required backup time. Compatibility Sizing: Ensure the Amaron battery’s voltage matches the UPS system (e.g., a 12V battery for a 12V UPS). Capacity Matching: Choose a battery capacity that meets or exceeds the UPS\\'s requirements for runtime during power outages. Calculate based on the load you wish to support. Installation Connection: Connect the Amaron battery to the UPS according to the manufacturer\\'s instructions. Typically, you\\'ll connect the positive (+) terminal to the UPS\\'s positive input and the negative (-) terminal to the negative input. Securing: Ensure that all connections are tight and secure to prevent arcing or disconnections. Performance and Benefits Extended Runtime: Using higher-capacity Amaron batteries can extend the runtime of the UPS during power outages. Reliability: Amaron batteries are known for their durability and ability to handle deep discharges, making them suitable for UPS applications. Maintenance-Free Options: Many Amaron batteries are designed to be maintenance-free, reducing the need for regular upkeep. Maintenance Regular Checks: Periodically inspect the UPS and battery connections for corrosion and tightness. Battery Health: Monitor the battery’s voltage and overall health using a multimeter or UPS diagnostics. Replacement: Replace the battery as needed based on performance degradation or if the battery shows signs of failure. Safety Precautions Ventilation: Ensure proper ventilation during operation to prevent gas buildup, especially with lead-acid batteries. Overcharging: Monitor charging cycles to prevent overcharging, which can lead to battery damage. Conclusion Combining Amaron batteries with APC UPS systems can enhance your power reliability and provide an effective backup solution. Always refer to the specific user manuals for both the UPS and batteries to ensure compatibility and proper installation procedures.

Send Message

Still searching for
overall system performance?