Bhiwadi
+918076792323

'potential failures'

Items tagged with 'potential failures'

product image
20 KVA UPS

The Vertiv Liebert GXT5-20KMVRT11UXLN is a 20kVA (20000VA) rack/tower UPS from the Liebert GXT5 series. The GXT5 series provides high-performance, reliable power protection for critical equipment in IT environments such as data centers, server rooms, and telecommunications. The Liebert GXT5-20KMVRT11UXLN model is specifically designed to deliver high availability, efficient energy management, and flexible configurations (tower or rackmount). Here\'s a detailed breakdown of the Vertiv Liebert GXT5-20KMVRT11UXLN UPS: Key Features of the Vertiv Liebert GXT5-20KMVRT11UXLN: 1. Power Rating and Capacity: Power Rating: 20kVA / 20000VA Output Power: 16000W (16kW) at 208V (depending on load conditions) This provides robust protection for high-density IT loads, such as servers, network switches, telecom systems, and critical infrastructure. 2. Voltage Configuration: Input Voltage: 208V (for 3-phase input) The GXT5 can also be configured to operate at 120V AC (single-phase) when needed, making it flexible for different types of equipment and power requirements. 3. Topology: On-Line Double-Conversion: The GXT5 series uses double-conversion (On-Line) topology, providing the highest level of protection. This topology ensures that the UPS continuously filters and conditions the input power and provides a pure sinewave output to sensitive loads, completely isolating the load from power disturbances. Zero transfer time from utility power to battery power ensures no downtime for connected equipment. 4. Waveform Type: Pure Sinewave Output: The UPS produces a clean, pure sinewave output which is essential for powering sensitive IT equipment without distortion or interference. 5. Battery Type and Runtime: Battery Type: Typically uses Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) batteries, which require little maintenance and are commonly used in high-performance UPS systems. External Battery Support: The Liebert GXT5-20KMVRT11UXLN supports external battery packs (available separately) to extend runtime for longer periods, making it ideal for power-hungry or mission-critical applications. Charging Time: Typically, it takes about 4-6 hours to recharge the batteries to 90% capacity. 6. Runtime (Backup Time): The battery backup time will vary depending on the load. Here are some estimates: At 50% load (10kVA/10000W): Backup time could range between 15 to 25 minutes. At full load (20kVA/16000W): Backup time would be much shorter, around 5-10 minutes depending on configuration and battery capacity. Extended runtime can be achieved with additional external battery cabinets. 7. Cooling: Fan-assisted cooling ensures optimal temperature management during operation. The UPS is designed to operate efficiently even in environments with higher ambient temperatures. 8. Form Factor: Rackmount and Tower: The Liebert GXT5-20KMVRT11UXLN offers a flexible design, enabling it to be deployed as either a tower or a rackmount UPS. Rackmount form factor: 3U (for the rack version), designed for 19-inch rack installations. The rackmount option allows easy integration into standard server racks or data center environments. 9. Energy Efficiency and Certifications: Energy Star Certification: The Liebert GXT5 is Energy Star certified, meaning it meets high-efficiency standards and minimizes energy consumption during operation. It also has low total cost of ownership (TCO), thanks to its energy-efficient operation. High Efficiency Mode (Eco Mode): The UPS features an eco mode for high-efficiency operation during normal conditions, further reducing energy consumption when conditions permit. 10. Interfaces and Monitoring: LCD Display: The UPS comes with an LCD display that provides real-time information on key parameters such as input/output voltage, battery charge, load levels, and alarm status. Connectivity: USB, Serial, and Network Ports: The GXT5-20KMVRT11UXLN has USB and serial communication ports for local management and monitoring. SNMP Slot: It comes with an optional SNMP card for remote monitoring, allowing you to manage the UPS from anywhere on the network. Dry Contact Interface: Available for integration with building management or alert systems. 11. Advanced Features: Automatic Transfer Switch (ATS): The Liebert GXT5 can support an optional ATS for automatic switching between the utility power and the UPS in the event of a failure, ensuring seamless power continuity. Overload and Short-Circuit Protection: Protects the UPS and connected loads in case of an overload or short circuit by gracefully shutting down the system or providing alarms. Smart Battery Management: The system features battery monitoring to optimize charging cycles and extend the life of the battery bank. Battery health diagnostics help predict and prevent potential failures. Audible Alarms: Provides alerts for low battery, overload, power failure, and other system faults, ensuring that you’re always aware of the UPS condition.

Send Message
product image
6 KVA UPS

The Vertiv 6kVA UPS models are available in both the SB (Standby) and LB (Line-Interactive) series, as well as other more advanced series, such as the On-Line (Double Conversion) series, which are designed for higher power loads and more demanding applications. Below is a breakdown of the 6kVA UPS options from Vertiv, highlighting the SB, LB, and other potential variants, including their key features, specifications, and ideal use cases. Vertiv 6kVA LB (Line-Interactive) Series UPS The LB Series for 6kVA is more advanced than the SB Series, using a Line-Interactive topology that corrects voltage fluctuations without switching to battery power. This is ideal for environments where power stability is critical, and provides more reliable protection for sensitive equipment. Key Features: Topology: Line-Interactive Power Rating: 6kVA / 6000VA Output Power: 4200W - 5400W (depending on model) Input Voltage: 140V - 300V (wider input range than SB series) Output Voltage: 230V ± 10% Waveform Type: Simulated Sinewave (or Pure Sinewave, depending on model) Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: 12V, 18Ah, 24Ah, or higher (depending on model) Charging Time: 4-6 hours for full charge Backup Time (Runtime): 10-30 minutes depending on load (e.g., 50-70% load) Cooling: Fan-assisted cooling for high-efficiency operation Interfaces: USB/Serial ports (with optional software for remote monitoring and automatic shutdown) Form Factor: Tower or Rackmount (depending on specific model) Additional Features: Automatic Voltage Regulation (AVR): Helps correct voltage fluctuations (e.g., brownouts or surges) without using battery power Cold Start: Can be turned on without mains power (useful during power failures) LCD/LED Display (on some models): Real-time monitoring of UPS status, battery level, load capacity, etc. Overload, short-circuit, and low-battery protection Smart battery management to extend battery life and improve performance Audible alarms for low battery, overload, and fault events Advanced monitoring and remote management (via optional software) Ideal Use Case: Small-to-medium-sized servers, network equipment, and critical business infrastructure Medical equipment, point-of-sale (POS) systems, and sensitive electronics requiring stable power quality IT infrastructure in small businesses needing both battery backup and protection against power fluctuations Vertiv 6kVA On-Line (Double Conversion) Series UPS The On-Line (Double Conversion) series is the most robust and efficient series, providing true double-conversion power protection. This topology is designed to offer continuous clean and stable power to sensitive equipment, protecting it from all power disturbances including blackouts, brownouts, and voltage surges. Key Features: Topology: On-Line (Double Conversion) Power Rating: 6kVA / 6000VA Output Power: 4800W - 5400W (depending on the model) Input Voltage: 110V - 300V (wide input range) Output Voltage: 230V ± 2% (pure sinewave output) Waveform Type: Pure Sinewave Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: Typically 12V, 18Ah, or 24Ah, with external battery options for longer runtimes Charging Time: 4-6 hours for full charge Backup Time (Runtime): 20-40 minutes depending on load (e.g., 50-60% load) Cooling: Advanced fan-assisted cooling with efficient heat dissipation Interfaces: USB/Serial ports, RS-232, SNMP for remote monitoring and management Form Factor: Tower or Rackmount Additional Features: Double Conversion: Provides continuous, clean power from the UPS’s inverter, ensuring zero transfer time during power disturbances High Efficiency Mode: Switches to energy-efficient operation during stable power conditions while ensuring seamless transition to double conversion during power failure LCD/LED Display: Provides real-time status of the UPS, battery health, load capacity, etc. Remote Monitoring: Integrated SNMP or optional software for proactive monitoring and automated shutdown Overload and short-circuit protection Extended Battery Options: External battery packs for longer runtime in high-demand applications

Send Message
product image
UPS Rental & UPS Repairing Service

Repairing a Vertiv 1 kVA UPS involves a systematic approach to diagnosing and fixing issues. Here’s a detailed overview of the repair process, common problems, and considerations specific to Vertiv UPS systems: Repair Process Initial Assessment Gather Information: Document symptoms such as alarms, performance issues, or failure to start. Visual Inspection: Look for signs of physical damage, burnt components, or loose connections. Diagnosis Self-Diagnostic Tests: Many Vertiv UPS units have built-in diagnostic tools. Run these tests to identify fault codes. Multimeter Testing: Use a multimeter to check voltage levels, current, and resistance. Battery Health Check: Test the battery using a dedicated battery tester or multimeter to check for voltage and capacity. Inspect Fuses and Circuit Breakers: Check for blown fuses or tripped circuit breakers that could indicate a fault. Common Issues Battery Failure: The most common issue; batteries may need replacement due to age or improper charging. Capacitor Issues: Capacitors can degrade over time, leading to performance problems. Overheating: Caused by dust accumulation, blocked ventilation, or fan failure. Control Board Failures: Issues with the control board can affect functionality. Input/Output Problems: Fluctuations in input power or output voltage can indicate deeper electrical issues. Repair and Replacement Battery Replacement: Carefully remove old batteries and install new ones, ensuring correct polarity. Component Replacement: Replace any faulty components, such as capacitors or fuses, as identified during diagnostics. Soldering and Repairing Connections: Resolder any loose or damaged connections on the circuit board. Firmware Updates: If applicable, update the firmware for optimal performance. Testing After Repair Functional Testing: Run the UPS to ensure it operates correctly. Load Testing: Test under load conditions to verify performance and capacity. Battery Discharge Test: Simulate a power outage to ensure the UPS provides backup power as expected. Final Inspection Safety Checks: Verify that all repairs meet safety standards. Documentation: Record all repairs, parts replaced, and any other relevant information for future reference. Maintenance Tips Regular Testing: Conduct periodic self-tests and inspections to identify potential issues early. Battery Maintenance: Keep battery terminals clean and ensure connections are tight. Cooling: Ensure proper ventilation around the UPS to prevent overheating. Environment: Keep the UPS in a controlled environment, away from moisture and extreme temperatures. When to Seek Professional Help If issues are complex or beyond basic troubleshooting, consult a professional service. Use authorized Vertiv service centers for repairs to ensure quality and warranty compliance. Conclusion Repairing a Vertiv 1 kVA UPS requires careful diagnosis and knowledge of electrical systems. Regular maintenance can help prevent many common issues, ensuring reliable performance. For more complicated repairs, seeking professional help is recommended to ensure safety and effectiveness.

Send Message
product image
Battery Testing In Sonipat

Battery testing is essential to ensure optimal performance, safety, and longevity. Here are key details: Types of Tests: Voltage Test: Measures the battery's output voltage to check if it meets the specified range. Capacity Test: Assesses how much charge the battery can hold and deliver over time. Load Test: Simulates real-world usage to check how the battery performs under load. Internal Resistance Test: Evaluates the battery's internal resistance, indicating its health. Tools Used: Multimeter, hydrometer (for lead-acid batteries), battery analyzer, and load testers. Frequency: Regular testing is recommended, especially for backup power systems, to prevent unexpected failures. Indicators of a Faulty Battery: Low voltage, poor capacity, high internal resistance, or physical damage like swelling or leakage. Proper battery testing helps in proactive maintenance, ensuring reliability and safety.

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
ALL TYPES OF UPS REPAIR

UPS (Uninterruptible Power Supply) repair typically involves diagnosing and fixing issues related to power failures, battery problems, or malfunctioning components. Here are some common repair tasks: Battery Replacement: Batteries in UPS units degrade over time and may need replacing. This is one of the most common repairs. Power Supply Issues: Problems with the internal power supply circuit or malfunctioning capacitors can cause a UPS to fail to charge or provide backup power. Overheating Issues: Dust buildup or fan failure can cause the unit to overheat, requiring cleaning or fan replacement. Inverter and Charger Problems: If the UPS isn't converting DC to AC power properly, it could be an inverter problem. Similarly, charger failures could stop the battery from charging. Internal Component Replacement: This may involve replacing transformers, fuses, or circuit boards that have failed.

Send Message
product image
Emerson 3-Phase Ups In Manesar

Emerson 3-Phase UPS (Uninterruptible Power Supply) systems are high-quality, reliable power backup solutions typically used in industrial, commercial, and critical infrastructure applications. These systems are designed to provide uninterrupted power to sensitive equipment, preventing downtime due to power interruptions, voltage fluctuations, or other electrical issues. Key Features of Emerson 3-Phase UPS: Power Capacity: 3-Phase UPS systems come in a wide range of power capacities, generally from 10 kVA to 800 kVA or even higher, depending on the model. Suitable for medium to large-scale facilities like data centers, hospitals, manufacturing plants, and office buildings. Technology: Double Conversion Online Technology: Emerson’s 3-phase UPS systems typically use online double conversion technology, meaning that the inverter constantly supplies clean, regulated power to the load while the battery is charging. Efficiency: High-efficiency models (up to 96% or more) reduce energy consumption and operating costs. Battery Management: Integrated advanced battery management for monitoring health, charge, and backup times. High Availability: Designed to provide reliable power for mission-critical applications. Hot Swappable Batteries: In some models, batteries can be replaced without shutting down the UPS, ensuring uninterrupted power supply. Scalability: Many models allow for modular expansion, meaning you can add additional capacity as needed. Input/Output Voltage: Input Voltage: Common input voltages are 380V, 400V, and 415V (3-phase). Output Voltage: Typically 208V, 220V, 230V, or 400V for 3-phase systems, depending on the regional power grid standards. Power Factor: Emerson UPS systems usually have a high power factor of 0.9 or higher, improving efficiency. Advanced Features: LCD/LED Display: Provides real-time data on UPS status, battery health, load levels, and alarms for easy monitoring. Remote Monitoring: Allows remote access for monitoring via web or SNMP (Simple Network Management Protocol) for real-time alerts and diagnostics. Bypass Capability: If maintenance is required or the UPS is malfunctioning, the system can transfer to bypass mode to avoid downtime. Design and Durability: Compact Design: Many models are designed to be space-efficient without compromising on power or cooling needs. Rack-Mountable or Tower Formats: Depending on the installation space, Emerson offers both tower-style and rack-mounted designs. Thermal Management: These UPS systems typically include advanced cooling systems to maintain efficient operation and prevent overheating. Applications: Data Centers: Ensures uptime for servers and networking equipment. Industrial Equipment: Protects critical machinery and automated systems from power failures. Telecommunications: Keeps communication systems running without interruption. Hospitals: Supports life-saving equipment and systems that require constant power. Commercial Buildings: Ensures backup power for office systems and equipment. Maintenance and Service: Smart Battery Testing: Advanced systems monitor the health of batteries and alert users when maintenance or replacement is required. Serviceable Parts: Emerson provides comprehensive support and service contracts to ensure your UPS remains in optimal condition. Proactive Monitoring: With remote monitoring and diagnostic tools, faults can be detected before they impact operations. Popular Models: Emerson (now part of Vertiv) offers various UPS models under different series, such as: Vertiv Liebert® ITA2: A high-efficiency 3-phase UPS solution for small to medium-sized applications. Vertiv Liebert® EXL S1: A modular UPS system that offers scalability and high availability. Vertiv Liebert® NXL: A large capacity 3-phase UPS designed for data centers and industrial applications. Advantages of Emerson 3-Phase UPS: High Reliability: Ensures critical equipment remains powered during power failures or fluctuations. Advanced Technology: Features like online double conversion, modular design, and remote monitoring provide superior performance and flexibility. Energy Efficiency: Many Emerson UPS systems are highly efficient, reducing operating costs and environmental impact. Scalability: As your power requirements grow, Emerson's modular systems can easily expand to meet increased demand. Conclusion: Emerson 3-Phase UPS systems are excellent solutions for businesses and facilities that require high uptime and reliability. With their advanced features, efficient energy use, and robust design, they provide essential power protection for critical infrastructure. Whether you're in need of a UPS for a small office or a large data center, Emerson offers scalable and reliable power backup systems that ensure uninterrupted operation.

Send Message
product image
All Types Of Ups & Batteries Repair And Maintenance Of Ups

Repair and maintenance of UPS (Uninterruptible Power Supply) systems and batteries are crucial for ensuring their reliability and longevity. Below is a comprehensive overview of the types of UPS systems, batteries, and the associated repair and maintenance practices. Types of UPS Systems Offline/Standby UPS: Description: Provides basic protection; switches to battery during a power outage. Maintenance: Regular battery checks and replacement every 3-5 years. Line-Interactive UPS: Description: Offers voltage regulation and battery backup; ideal for environments with frequent voltage fluctuations. Maintenance: Inspect and test the battery and inverter regularly; check for dust accumulation. Online Double-Conversion UPS: Description: Provides continuous power and isolates equipment from power issues. Maintenance: More complex; requires regular inspection of internal components, battery health checks, and firmware updates. Modular UPS: Description: Scalable systems that allow for adding or removing modules based on power needs. Maintenance: Regular checks on each module, ensuring proper connections and functionality. Types of Batteries Used in UPS Lead-Acid Batteries: Types: Sealed Lead Acid (SLA), Absorbent Glass Mat (AGM), Gel. Maintenance: Regularly check electrolyte levels (for non-sealed types), clean terminals, and test for capacity. Lithium-Ion Batteries: Description: Increasingly used due to longer life and lighter weight. Maintenance: Monitor battery management systems (BMS) for health and performance; check for firmware updates. Nickel-Cadmium (NiCd) Batteries: Description: Used in specific applications; known for durability. Maintenance: Regularly test for capacity and perform equalization charging. Repair and Maintenance Practices 1. Routine Inspections Visual Checks: Inspect for physical damage, corrosion, or loose connections. Environmental Conditions: Ensure the UPS and batteries are in a suitable environment (temperature, humidity). 2. Battery Maintenance Testing: Conduct regular load tests and capacity tests to assess battery health. Cleaning: Clean terminals and connections to prevent corrosion. Replacement: Replace batteries as per manufacturer recommendations (typically every 3-5 years for lead-acid). 3. UPS Maintenance Firmware Updates: Keep the UPS firmware updated for optimal performance. Component Checks: Inspect capacitors, fans, and other internal components for wear and tear. Cooling System: Ensure that cooling fans are operational and that vents are not blocked. 4. Emergency Procedures Testing: Regularly test the UPS under load conditions to ensure it functions correctly during an outage. Documentation: Maintain records of all maintenance activities, repairs, and battery replacements. 5. Professional Servicing Scheduled Maintenance: Engage professional services for comprehensive inspections and repairs, especially for complex systems like online UPS. Emergency Repairs: Have a plan in place for rapid response to UPS failures, including access to spare parts. Conclusion Regular maintenance and timely repairs of UPS systems and batteries are essential for ensuring uninterrupted power supply and protecting sensitive equipment. By following a structured maintenance schedule and engaging professional services when necessary, you can significantly extend the lifespan and reliability of your UPS systems and batteries. For specific service providers or detailed maintenance plans, consider reaching out to local UPS service companies or manufacturers for tailored solutions.

Send Message
product image
ALL TYPES UPS & BATTERIES AMC

An Annual Maintenance Contract (AMC) for UPS systems typically includes routine maintenance, repair services, and emergency support to ensure optimal performance. It covers inspections, battery maintenance, and high-priority assistance during breakdowns, helping to extend the lifespan of your UPS and batteries. For more specific details, you can refer to the links provided in the search results. UPS AMC Services Overview: Purpose of AMC: The AMC is designed to provide comprehensive support for UPS systems, ensuring they operate efficiently and reliably. This includes regular maintenance, emergency repairs, and technical assistance. Key Components of AMC: Routine Maintenance: Regular inspections and servicing to prevent issues before they arise. Repair Services: Quick response to any failures or malfunctions, minimizing downtime. Emergency Support: 24/7 assistance to address urgent issues. Types of AMC Plans: Platinum Plan: Covers all spare parts during maintenance, excluding natural calamities. High-priority assistance during breakdowns. Regular preventive maintenance and detailed reports with recommendations. Gold Plan: Similar to the Platinum plan but does not include standby units. Focuses on critical equipment maintenance. Silver Plan: Basic support with engineers and technical assistance only. Maintenance Schedule: Monthly Checks: Visual inspections of batteries and connections. Measurement of ambient temperature and humidity. Cleaning of the UPS environment. Quarterly Checks: Voltage measurement of each battery cell. Conductance testing for battery health. Yearly Checks: Torque measurement of all connections. Testing of interconnecting cable resistance. Importance of Battery Maintenance: Regular maintenance is crucial as battery failures account for a significant percentage of UPS failures. Environmental conditions can greatly affect battery life, with temperature fluctuations leading to reduced performance. Contact Information: For inquiries or to set up an AMC, you can reach out via: Email: info@universalpower.co.in Phone: 8744823336

Send Message

Still searching for
potential failures?