Faridabad
+918076792323

'monitor ambient temperature'

Items tagged with 'monitor ambient temperature'

product image
20 KVA UPS

The Vertiv Liebert GXT5-20KMVRT11UXLN is a 20kVA (20000VA) rack/tower UPS from the Liebert GXT5 series. The GXT5 series provides high-performance, reliable power protection for critical equipment in IT environments such as data centers, server rooms, and telecommunications. The Liebert GXT5-20KMVRT11UXLN model is specifically designed to deliver high availability, efficient energy management, and flexible configurations (tower or rackmount). Here\'s a detailed breakdown of the Vertiv Liebert GXT5-20KMVRT11UXLN UPS: Key Features of the Vertiv Liebert GXT5-20KMVRT11UXLN: 1. Power Rating and Capacity: Power Rating: 20kVA / 20000VA Output Power: 16000W (16kW) at 208V (depending on load conditions) This provides robust protection for high-density IT loads, such as servers, network switches, telecom systems, and critical infrastructure. 2. Voltage Configuration: Input Voltage: 208V (for 3-phase input) The GXT5 can also be configured to operate at 120V AC (single-phase) when needed, making it flexible for different types of equipment and power requirements. 3. Topology: On-Line Double-Conversion: The GXT5 series uses double-conversion (On-Line) topology, providing the highest level of protection. This topology ensures that the UPS continuously filters and conditions the input power and provides a pure sinewave output to sensitive loads, completely isolating the load from power disturbances. Zero transfer time from utility power to battery power ensures no downtime for connected equipment. 4. Waveform Type: Pure Sinewave Output: The UPS produces a clean, pure sinewave output which is essential for powering sensitive IT equipment without distortion or interference. 5. Battery Type and Runtime: Battery Type: Typically uses Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) batteries, which require little maintenance and are commonly used in high-performance UPS systems. External Battery Support: The Liebert GXT5-20KMVRT11UXLN supports external battery packs (available separately) to extend runtime for longer periods, making it ideal for power-hungry or mission-critical applications. Charging Time: Typically, it takes about 4-6 hours to recharge the batteries to 90% capacity. 6. Runtime (Backup Time): The battery backup time will vary depending on the load. Here are some estimates: At 50% load (10kVA/10000W): Backup time could range between 15 to 25 minutes. At full load (20kVA/16000W): Backup time would be much shorter, around 5-10 minutes depending on configuration and battery capacity. Extended runtime can be achieved with additional external battery cabinets. 7. Cooling: Fan-assisted cooling ensures optimal temperature management during operation. The UPS is designed to operate efficiently even in environments with higher ambient temperatures. 8. Form Factor: Rackmount and Tower: The Liebert GXT5-20KMVRT11UXLN offers a flexible design, enabling it to be deployed as either a tower or a rackmount UPS. Rackmount form factor: 3U (for the rack version), designed for 19-inch rack installations. The rackmount option allows easy integration into standard server racks or data center environments. 9. Energy Efficiency and Certifications: Energy Star Certification: The Liebert GXT5 is Energy Star certified, meaning it meets high-efficiency standards and minimizes energy consumption during operation. It also has low total cost of ownership (TCO), thanks to its energy-efficient operation. High Efficiency Mode (Eco Mode): The UPS features an eco mode for high-efficiency operation during normal conditions, further reducing energy consumption when conditions permit. 10. Interfaces and Monitoring: LCD Display: The UPS comes with an LCD display that provides real-time information on key parameters such as input/output voltage, battery charge, load levels, and alarm status. Connectivity: USB, Serial, and Network Ports: The GXT5-20KMVRT11UXLN has USB and serial communication ports for local management and monitoring. SNMP Slot: It comes with an optional SNMP card for remote monitoring, allowing you to manage the UPS from anywhere on the network. Dry Contact Interface: Available for integration with building management or alert systems. 11. Advanced Features: Automatic Transfer Switch (ATS): The Liebert GXT5 can support an optional ATS for automatic switching between the utility power and the UPS in the event of a failure, ensuring seamless power continuity. Overload and Short-Circuit Protection: Protects the UPS and connected loads in case of an overload or short circuit by gracefully shutting down the system or providing alarms. Smart Battery Management: The system features battery monitoring to optimize charging cycles and extend the life of the battery bank. Battery health diagnostics help predict and prevent potential failures. Audible Alarms: Provides alerts for low battery, overload, power failure, and other system faults, ensuring that you’re always aware of the UPS condition.

Send Message
product image
Battery

Amaron batteries are well-known for their performance and reliability in various applications, including automotive, UPS systems, and renewable energy setups. Here’s a comprehensive overview of charging Amaron batteries, covering methods, parameters, and best practices. Charging Amaron Batteries 1. Charging Methods: Constant Current (CC) Charging: The charger supplies a constant current until the battery reaches a predefined voltage. Commonly used for lead-acid batteries, ensuring a safe and efficient charge. Constant Voltage (CV) Charging: After reaching the target voltage, the charger maintains that voltage while the current decreases. This method is suitable for maintaining battery charge without overcharging. Smart Chargers: These chargers automatically adjust voltage and current based on the battery's state. They often include features like temperature compensation and multi-stage charging. 2. Charging Parameters: Voltage: For lead-acid Amaron batteries, the charging voltage typically ranges from 2.25V to 2.40V per cell. For a 12V battery (6 cells), this translates to about 13.5V to 14.4V. Current: The charging current should be set to 10-30% of the battery's capacity (C-rate). For example, a 100Ah battery should be charged at 10A to 30A. Temperature Compensation: Adjust the charging voltage based on the ambient temperature to avoid damage. Generally, for every degree Celsius above 25°C, reduce the charging voltage by 0.005V per cell. 3. Charging Stages: Bulk Charge: The initial phase where maximum current is applied to quickly charge the battery. This stage continues until the battery reaches approximately 70-80% of its capacity. Absorption Charge: The charger maintains a constant voltage, allowing the current to taper off as the battery approaches full charge. This phase ensures the battery reaches full capacity without overcharging. Float Charge: A lower voltage is maintained to keep the battery fully charged without overcharging. This is essential for maintaining the battery in a ready state for immediate use. Best Practices for Charging Amaron Batteries: Use the Right Charger: Always use a charger specifically designed for the type of battery you are charging (lead-acid, AGM, etc.). Avoid Deep Discharge: Regularly charge the battery to prevent deep discharges, which can shorten battery life. Monitor Temperature: Ensure the charging environment is within the recommended temperature range (typically 15°C to 25°C). Regular Maintenance: Periodically check the battery's state of charge and electrolyte levels (if applicable). Clean terminals and connections to ensure efficient charging. Follow Manufacturer Guidelines: Always refer to the specific charging instructions provided by Amaron for the particular battery model. Conclusion Proper charging of Amaron batteries is vital for maximizing their lifespan and performance. By following the recommended charging methods, parameters, and best practices, users can ensure that their batteries operate efficiently and reliably. If you have specific models in mind or need further details, feel free to ask!

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
APC 6000VA UPS

The APC Smart-UPS RT 6000VA is a high-performance uninterruptible power supply (UPS) designed to provide reliable power protection for critical equipment in various settings such as data centers, server rooms, and industrial environments. Here are some key features and specifications: Key Features: Power Capacity: 6000VA / 4800W – Suitable for medium-to-large systems that need substantial power backup. Rack-Mountable Design: The UPS can be mounted in a 19-inch rack, making it ideal for environments that require a space-efficient solution. Extended Runtime: It provides sufficient runtime to safely shut down connected equipment or continue operations during short power outages, depending on the load. Pure Sine Wave Output: Ensures high-quality power to sensitive equipment, avoiding power disturbances such as harmonic distortion or voltage spikes. Hot-Swappable Batteries: Allows for maintenance without powering down the UPS, increasing uptime and operational efficiency. LCD Display: A user-friendly LCD display provides detailed information about the UPS status, including input/output voltage, battery charge, and runtime. Extended Battery Options: Can be connected to external battery packs for increased runtime in case of prolonged power outages. Advanced Communication Features: Offers a variety of communication options such as USB, RS-232, or SNMP for monitoring and management. It’s compatible with APC’s PowerChute management software. Environmental Monitoring: Some models include environmental sensors to monitor conditions like temperature and humidity, ensuring the UPS operates in optimal conditions. Safety Features: It includes features such as overload protection, short-circuit protection, and battery optimization to ensure safe and efficient operation. Ideal Use Cases: Data Centers Server Rooms Network Equipment Industrial and Medical Equipment

Send Message
product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
Maintenance Tips for UPS Systems and Batteries​

Maintaining your Uninterruptible Power Supply (UPS) system and its batteries is crucial for ensuring reliable performance and extending their lifespan. Here are some essential maintenance tips: 1. Regular Inspection Visual Checks: Inspect the UPS and batteries for any signs of physical damage, leaks, or corrosion. Connections: Ensure that all connections are secure and free from dust and corrosion. 2. Battery Maintenance Battery Testing: Regularly test the batteries for capacity and performance. Use a battery tester to check voltage and load. Clean Terminals: Keep battery terminals clean and free from corrosion. Use a mixture of baking soda and water to clean any corrosion, and ensure terminals are dry before reconnecting. Check Electrolyte Levels: For flooded lead-acid batteries, check the electrolyte levels regularly and top up with distilled water as needed. 3. Environmental Considerations Temperature Control: Keep the UPS and batteries in a cool, dry environment. High temperatures can reduce battery life significantly. Ventilation: Ensure proper ventilation around the UPS to prevent overheating. Avoid placing it in enclosed spaces without airflow. 4. Regular Testing Self-Test: Perform regular self-tests to ensure the UPS is functioning correctly. Most UPS systems have a built-in self-test feature. Load Testing: Conduct load tests periodically to ensure the UPS can handle the required load during a power outage. 5. Firmware and Software Updates Keep Software Updated: Regularly check for and install firmware updates for your UPS. This can improve performance and security. Monitoring Software: Use UPS monitoring software to track performance metrics and receive alerts for any issues. 6. Battery Replacement Follow Manufacturer Guidelines: Replace batteries according to the manufacturer\'s recommendations, typically every 3-5 years for lead-acid batteries. Dispose of Batteries Properly: Follow local regulations for the disposal of batteries to ensure environmental safety. 7. Load Management Avoid Overloading: Ensure that the total load connected to the UPS does not exceed its rated capacity. This can lead to overheating and reduced battery life. Balanced Load: Distribute the load evenly across all outlets to prevent any single outlet from being overloaded. 8. Documentation Keep Records: Maintain a log of maintenance activities, battery replacements, and any issues encountered. This can help in troubleshooting and planning future maintenance. 9. Professional Maintenance Schedule Professional Inspections: Consider having a qualified technician perform regular inspections and maintenance, especially for larger UPS systems. 10. User Training Educate Staff: Train staff on the proper use and maintenance of the UPS system, including how to respond in case of a power outage.

Send Message
product image
Vertiv Powerbank

The Vertiv Liebert Powerbank 600 is a modular and scalable uninterruptible power supply (UPS) solution designed for critical applications, particularly in data centers and telecommunications. It provides reliable power protection and is known for its flexibility and efficiency. Key Specifications Model: Liebert Powerbank 600 Capacity: 600 kVA Input Voltage: Typically supports 380/400/415 V three-phase systems Output Voltage: Configurable based on system requirements Form Factor: Modular design for easy scalability Efficiency: High efficiency, often exceeding 95% in double conversion mode Features Modular Design: Allows for easy expansion and maintenance, enabling users to add or replace modules as needed. High Availability: Designed for redundancy and reliability, ensuring continuous power supply to critical loads. Advanced Monitoring: Equipped with a user-friendly interface and remote monitoring capabilities for real-time performance tracking. Flexible Configuration: Supports various configurations to meet specific power requirements and environmental conditions. Battery Management: Intelligent battery management features to optimize battery life and performance. Scalability: Can be configured for parallel operation to increase capacity and redundancy. Compact Footprint: Designed to maximize power density in limited spaces, making it suitable for various installation environments. Applications Data Centers: Provides robust power protection for critical IT infrastructure. Telecommunications: Ensures uptime for communication systems. Industrial Applications: Safeguards sensitive equipment in manufacturing and processing environments. Performance Metrics Input Frequency: Typically supports 50/60 Hz Output Power Factor: Generally rated at 0.9, allowing for efficient power delivery. Operating Temperature: Designed to operate in a range of 0 to 40 degrees Celsius. Conclusion The Vertiv Liebert Powerbank 600 is a reliable and efficient UPS solution for businesses that require uninterrupted power supply for their critical applications. Its modular design, advanced features, and scalability make it suitable for a wide range of environments, ensuring that essential systems remain operational during power disturbances. For specific model details and configurations, it is advisable to consult the official Vertiv documentation or a local distributor.

Send Message
product image
Vertiv 10 Kva Ups

The Vertiv Liebert GXT MT LX (3 X 3) 10KVA UPS is a compact and reliable uninterruptible power supply designed for critical applications. It features best-in-class efficiency, robust protection, and simplified installation, making it suitable for commercial use. Key Specifications Power Rating: 10 KVA Phase: 3-phase, 4-wire Input Voltage: 400VAC Output Type: Online double conversion Warranty: 1 year Features High Efficiency: Offers excellent energy efficiency, reducing operational costs. Compact Design: Space-saving design ideal for various environments. Remote Monitoring: Capable of remote management for enhanced operational oversight. Applications Ideal for data centers, telecommunications, and other critical systems requiring uninterrupted power. For more detailed specifications, refer to the official Vertiv documentation. ### Additional Features True Online Double-Conversion: Provides continuous power supply and protects against power disturbances. DSP Processor: Utilizes the latest Digital Signal Processing technology for enhanced performance. Output Power Factor: Rated at 0.9, ensuring efficient power delivery. Active Input Power Factor Correction: Maintains efficiency across all phases. Frequency Converter Mode: Supports both 50 Hz and 60 Hz operations. ECO Mode Operation: Energy-saving mode that optimizes efficiency during low-load conditions. Emergency Power-Off Function (EPO): Allows for immediate shutdown in emergencies. Generator Compatibility: Designed to work seamlessly with generator systems. Multiple Communication Ports: Includes SNMP, USB, and RS-232 for versatile monitoring and management options. 3-Stage Extendable Charging Design: Optimizes battery performance and extends battery life. Adjustable Battery Numbers: Configurable for long-run models based on specific needs. Operational Conditions Operating Temperature: Functions effectively in a temperature range of 0 °C to 40 °C. Integrated Maintenance Bypass Breaker: Facilitates maintenance without interrupting power supply. Scalability: Can be expanded up to 40 kVA for growing power needs. Caster Wheels: Equipped for easy repositioning within facilities. Conclusion The Vertiv Liebert GXT MT LX (3 X 3) 10KVA UPS is engineered for high performance and reliability, making it an excellent choice for businesses that require uninterrupted power for their critical infrastructure. Its advanced features, compact design, and efficient operation ensure that essential systems remain operational during power outages. For further information, consult the official Vertiv website or authorized distributors.

Send Message
product image
Vertiv Gxt Ups

The Vertiv GXT UPS series, specifically in the 50 to 75 kVA range, is designed for commercial applications requiring reliable power protection. It features online double conversion technology, ensuring clean and stable power supply, and offers robust protection against overvoltage. Key Specifications Power Ratings: 50 to 75 kVA Usage/Application: Commercial environments Protection Features: Overvoltage protection Warranty: 1 year Backup Time: Approximately 10 minutes, depending on load Features High Efficiency: Provides continuous power conditioning and premium protection against power outages. Compact Design: Suitable for various installation environments. User -Friendly Interface: Typically includes an LCD display for monitoring. Applications Ideal for data centers, telecommunications, and other critical systems where uninterrupted power is essential. For more detailed specifications, you can refer to the official Vertiv documentation. ### Additional Features True Online Double Conversion: Ensures continuous power supply even during power disturbances. Advanced Monitoring: Equipped with multiple communication ports (SNMP, USB, RS-232) for remote monitoring and management. Scalability: Can be configured for parallel operation to increase capacity and redundancy. Battery Management: Features a 3-stage extendable charging design for optimized battery performance. Input Voltage Range: Wide input voltage window (110-300 Vac) suitable for various environmental conditions. Performance Metrics Output Power Factor: Typically rated at 0.9, allowing for efficient power delivery. Double Conversion Efficiency: High efficiency rates, often exceeding 95%, which reduces operational costs. Operating Temperature: Designed to operate in a range of 0 to 40 degrees Celsius. Dimensions and Weight Form Factor: Tower model, designed for easy placement in server rooms or data centers. Weight: Varies by model, generally in the range of 100-200 kg. Conclusion The Vertiv GXT UPS in the 50 to 75 kVA range is a robust solution for businesses that require reliable power protection. Its advanced features, high efficiency, and user-friendly design make it suitable for critical applications, ensuring that essential systems remain operational during power interruptions. For further details, consult the official Vertiv website or authorized distributors.

Send Message

Still searching for
monitor ambient temperature?