Noida
+918076792323

'ample runtime'

Items tagged with 'ample runtime'

product image
10KVA UPS

The Vertiv™ Liebert® GXE 6000-10000VA UPS is part of the Liebert GXE Series, which provides line-interactive power protection with advanced features, making it an ideal solution for small and medium-sized businesses, IT infrastructure, and critical equipment in need of reliable power backup. The Liebert GXE UPS offers features like Automatic Voltage Regulation (AVR), extended battery support, efficient performance, and compact design. Here are all the key details and specifications for the Vertiv™ Liebert® GXE 6000-10000VA UPS: Vertiv Liebert GXE 10000VA UPS (10kVA) Power Rating: 10kVA / 10000VA Output Power: 6000W to 8000W Input Voltage: 170V - 280V Output Voltage: 230V ± 10% Waveform: Simulated Sinewave (or Pure Sinewave for specific models) Battery Type: Sealed Lead-Acid (SLA) / VRLA Battery Capacity: Typically 12V, 18Ah or 24Ah (with external battery options) Charging Time: 4-6 hours for a full recharge Backup Time: 10-40 minutes depending on load and battery configuration Form Factor: Tower or Rackmount Interfaces: USB/Serial, SNMP (optional) Additional Features: AVR, Smart Battery Management, LCD Display, Overload Protection, Alarms, External Battery Support Key Features: Topology: Line-Interactive – This topology offers good protection and ensures that your equipment receives stable power during fluctuations, such as brownouts or overvoltages, without using battery power unnecessarily. Power Rating: 6kVA to 10kVA (6000VA to 10000VA) – Suitable for medium to large-sized IT infrastructure, servers, networking equipment, and other critical applications that need consistent and reliable power. Output Power: 6kVA (6000VA) models typically provide 3600W - 4800W of output power. 10kVA (10000VA) models provide 6000W - 8000W of output power, depending on the specific model and configuration. Input Voltage Range: 170V - 280V (wide input voltage range) – Provides protection from both high and low voltage fluctuations. Output Voltage: 230V ± 10% – Standard output voltage suitable for most business and IT applications. Waveform Type: Simulated Sinewave – In line-interactive mode, the output waveform is simulated sinewave. However, the UPS is designed to handle sensitive loads well. Automatic Voltage Regulation (AVR): The Liebert GXE UPS comes with AVR that corrects voltage fluctuations without switching to battery power, reducing battery wear and extending the overall life of the system. Battery Type: Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) batteries – Commonly used for UPS systems due to their reliability and low maintenance. Battery Capacity: 12V batteries, with 18Ah, 24Ah, or higher capacity depending on the model and configuration. Extended Battery Support: The UPS can be connected to additional battery packs for longer backup runtimes if needed. Charging Time: Typically, the battery recharge time is around 4-6 hours for a full charge from a discharged state. Backup Time (Runtime): Backup time varies depending on load. For example: At 50% load, the runtime could range from 30 minutes to 1 hour. At full load, the backup time may range from 10-20 minutes, depending on the model and load. External Battery Packs can extend runtime significantly for longer power outages. Form Factor: Tower or Rackmount options are available, making the Liebert GXE adaptable for different environments, such as server rooms or small data centers. Rackmount models are designed for 19-inch racks and are ideal for installations in IT environments. Cooling: Fan-assisted cooling for efficient thermal management. Interfaces & Monitoring: USB/Serial Communication Ports for connection with monitoring and management software. SNMP Slot: Provides optional SNMP (Simple Network Management Protocol) support for remote monitoring and management. LCD Display: Many models include an LCD screen that shows real-time UPS status, load, battery condition, input/output voltage, and other important information. Smart Battery Management: Ensures that the batteries are efficiently charged and maintained, extending the life of the battery bank. Advanced battery diagnostics can help predict failures and improve overall UPS reliability. Overload Protection: Provides protection against equipment overload and ensures that the system shuts down or enters bypass mode in the event of a fault condition. Audible Alarms: Alarms provide real-time alerts for conditions like battery low, overload, fault conditions, and input/output abnormalities. Green Features: Energy-Efficient: Offers high energy efficiency to reduce operational costs. ECO Mode: In certain conditions, the system can operate in ECO mode to provide further energy savings, reducing electricity consumption.

Send Message
product image
6 KVA POWERBANK

The Vertiv 6kVA PowerBank UPS is typically part of Vertiv's On-Line or Line-Interactive power protection solutions that integrate battery backup systems designed to maintain a continuous supply of power in the event of an outage. These UPS systems are ideal for applications where consistent power quality and uptime are critical, such as for medium to large businesses, IT infrastructure, and high-demand environments like data centers. Although "PowerBank" is a brand name or marketing term used by Vertiv for specific models of UPS systems (often focused on extended battery runtimes or integrated external batteries), detailed product specifications and the exact model can vary. Below is a general overview of the Vertiv 6kVA PowerBank UPS based on the series features typically associated with Vertiv's offerings. Key Features and Specifications: 1. Topology: Double Conversion On-Line: Provides the highest level of protection by continuously filtering and conditioning the incoming utility power. It delivers pure sinewave output, making it suitable for sensitive equipment that requires high-quality power. The On-Line topology ensures zero transfer time in case of power failure because the UPS system is always supplying power from the inverter. 2. Power Rating: 6kVA / 6000VA (Provides backup for medium-sized systems or higher power applications like small-to-medium server rooms, network systems, and critical equipment). 3. Output Power: Output Power: 4.8 kW to 5.4 kW (depending on load and configuration) 4. Input and Output Specifications: Input Voltage: 110V - 300V, wide input range for handling fluctuations without switching to battery mode. Output Voltage: 230V ± 2% (standard in most countries) 5. Waveform Type: Pure Sinewave Output: Ensures that the connected equipment receives a smooth and continuous power supply without the distortions found in some lower-quality UPS systems. 6. Battery Configuration: Battery Type: Typically Sealed Lead-Acid (SLA) or Valve-Regulated Lead-Acid (VRLA) batteries. Battery Capacity: Typically, 12V batteries with 18Ah, 24Ah, or higher capacities. The system may include external battery modules (Battery Banks) for extended runtime, making it suitable for larger power demands and longer backup times. External Battery Packs: Some models support additional external battery cabinets, which allow the UPS to run longer during extended outages. This is especially important for environments where power failures may last for an extended period. 7. Charging Time: Typically, the system will fully recharge in around 4-6 hours, depending on battery size and environmental conditions. 8. Backup Time (Runtime): The backup time can range from 20 minutes to several hours, depending on the load. For example, a 50% load (about 3 kVA or 3000W) will generally offer a longer runtime. A full load of 6kVA will typically provide 10-15 minutes of backup time. If the UPS is configured with external battery packs, the runtime can be extended for much longer periods, making it ideal for critical systems that require extended protection during power outages. 9. Cooling System: The UPS is equipped with fan-assisted cooling to ensure efficient heat dissipation and prevent overheating during extended use. 10. Display and Monitoring: LCD Display: Displays real-time information about UPS status, battery health, load capacity, input/output voltages, battery runtime, and other important parameters. Audible Alarms: Alerts for conditions such as low battery, overload, power failure, and system faults. Smart Battery Management: Ensures optimal battery health and extends the lifespan of the UPS. 11. Connectivity and Interfaces: USB/Serial Ports: For communication with a connected computer or server for monitoring and management. SNMP Slots: Some models may offer SNMP (Simple Network Management Protocol) support for remote monitoring and management via networked devices. Dry Contact Interface: Allows integration with building management or alert systems. Optional Software: Available for automated shutdown in the event of prolonged power outages, and event logging. 12. Form Factor: Tower or Rackmount (depending on the specific model and user preferences). Some models are available in rackmount configurations for server rooms and data centers, while others are more suitable for a tower setup. 13. Additional Features: Overload Protection: Safeguards against exceeding the UPS's rated capacity. Short-Circuit Protection: Provides defense against electrical faults. Automatic Voltage Regulation (AVR): Ensures that the UPS compensates for voltage fluctuations (e.g., brownouts or overvoltages) without resorting to battery backup.

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
APC 6000VA UPS

The APC Smart-UPS RT 6000VA is a high-performance uninterruptible power supply (UPS) designed to provide reliable power protection for critical equipment in various settings such as data centers, server rooms, and industrial environments. Here are some key features and specifications: Key Features: Power Capacity: 6000VA / 4800W – Suitable for medium-to-large systems that need substantial power backup. Rack-Mountable Design: The UPS can be mounted in a 19-inch rack, making it ideal for environments that require a space-efficient solution. Extended Runtime: It provides sufficient runtime to safely shut down connected equipment or continue operations during short power outages, depending on the load. Pure Sine Wave Output: Ensures high-quality power to sensitive equipment, avoiding power disturbances such as harmonic distortion or voltage spikes. Hot-Swappable Batteries: Allows for maintenance without powering down the UPS, increasing uptime and operational efficiency. LCD Display: A user-friendly LCD display provides detailed information about the UPS status, including input/output voltage, battery charge, and runtime. Extended Battery Options: Can be connected to external battery packs for increased runtime in case of prolonged power outages. Advanced Communication Features: Offers a variety of communication options such as USB, RS-232, or SNMP for monitoring and management. It’s compatible with APC’s PowerChute management software. Environmental Monitoring: Some models include environmental sensors to monitor conditions like temperature and humidity, ensuring the UPS operates in optimal conditions. Safety Features: It includes features such as overload protection, short-circuit protection, and battery optimization to ensure safe and efficient operation. Ideal Use Cases: Data Centers Server Rooms Network Equipment Industrial and Medical Equipment

Send Message
product image
Vertiv 5kVA UPS

The Vertiv 5kVA UPS (Uninterruptible Power Supply) is designed to provide reliable backup power for critical equipment, protecting them from power outages, surges, and other electrical disturbances. Vertiv is known for providing high-quality power management solutions, and a 5kVA UPS typically serves small to medium-sized applications such as: Server rooms Small data centers Telecommunication equipment Networking devices Medical equipment Key Features of a Vertiv 5kVA UPS: Power Capacity: 5kVA (Kilovolt-Ampere) translates to 5000 Volt-Amperes. This is roughly equivalent to 4000 watts, but the exact power capacity depends on the power factor (typically around 0.8 for UPS systems). Battery Backup: Ensures that connected equipment continues to run during power outages. The runtime depends on the load being connected and the battery capacity. Surge Protection: Provides protection against voltage spikes and surges, which can damage sensitive equipment. Voltage Regulation: The UPS can regulate incoming voltage to ensure connected devices receive consistent, safe power even if the input voltage fluctuates. Compact Design: These units are usually compact and designed to fit into standard server racks or other equipment areas. Advanced Features: Some Vertiv 5kVA models come with monitoring and management capabilities via network cards, allowing you to check the status, set alarms, or configure settings remotely. Scalability: Many Vertiv UPS systems are modular and can be expanded with additional battery packs or additional units if needed. Maintenance Bypass: Ensures continuous operation and simplifies service and maintenance tasks.

Send Message
product image
VERTIV UPS

The Liebert APM is a modular, scalable, and flexible Uninterruptible Power Supply (UPS) system from Vertiv (formerly Emerson Network Power). It's designed to provide reliable power protection for a wide range of applications, including IT, industrial, healthcare, and telecommunication environments. The Liebert APM series comes in various power ratings, with the range you mentioned being 30 kW - 300 kW, as well as the smaller 1 to 25 kVA units, offering high flexibility for different power requirements. Key Features of the Liebert APM Series: Modular Design: One of the standout features of the Liebert APM UPS system is its modular design. This allows users to scale the system based on their current needs and future expansion. The modular units can be added incrementally, making it highly adaptable. This modular approach allows for easy maintenance and upgrades without having to replace the entire UPS unit. High Efficiency: The Liebert APM delivers high efficiency, typically achieving up to 95% or more under normal operating conditions. This efficiency helps reduce operational costs and energy consumption. It also features Eco-mode operation, which optimizes energy savings when operating in non-critical situations without compromising protection. Compact and Flexible: Despite its modular nature, the Liebert APM system has a compact design that fits easily into most data centers and industrial setups, where space can often be at a premium. It can be configured for 1-phase or 3-phase power supply, offering flexibility for different types of loads and systems. Scalable Power: The Liebert APM is available in a range from 1 kVA to 300 kVA, which makes it suitable for small server rooms to large data centers. The system allows for easy scalability by adding additional power modules as needed to meet growing demands. Flexible Battery Configurations: The UPS system supports a variety of battery configurations, allowing for customization based on your runtime requirements. You can select from different battery types, including VRLA (Valve-Regulated Lead-Acid) and lithium-ion batteries. Advanced Monitoring and Management: Liebert APM comes with Intelligent Monitoring that provides real-time data on the UPS’s performance, such as input/output voltage, battery status, and efficiency. It supports both local and remote monitoring, ensuring that technicians can be alerted to issues before they become critical problems. The system can be integrated with network management systems (NMS) for centralized control across multiple units. Dual Input Capability: Some models of the Liebert APM offer dual input power sources, providing redundancy for critical applications. This feature ensures that the system remains operational even if one power input fails. Fast Response Time: The Liebert APM offers a fast transfer time (typically in the milliseconds), ensuring that sensitive equipment is protected even during brief power outages or voltage fluctuations. Applications: Data Centers: Providing reliable, scalable power protection for server rooms and IT infrastructure. Industrial: Protecting critical manufacturing equipment and automated systems from power interruptions. Healthcare: Ensuring medical equipment, including imaging devices, lab instruments, and patient monitoring systems, remain operational during power outages. Telecommunications: Keeping communication systems up and running to ensure continuous operation of vital network infrastructure. Benefits: Scalability: The ability to scale up or down as required, which is a huge benefit for growing businesses or changing environments. Reduced Total Cost of Ownership (TCO): With high efficiency and modularity, the Liebert APM reduces energy consumption and minimizes the cost of maintenance. Reliability: Known for providing excellent protection against power issues, including surges, spikes, and outages. Customization: Supports different configurations and battery options to meet specific needs, offering flexibility across various industries. Models & Power Ratings: Small Power Ratings: For smaller environments or edge computing setups, Liebert APM models ranging from 1 kVA to 25 kVA offer robust protection without being overly complex. Large Power Ratings: For larger industrial or data center applications, the 30 kW to 300 kW versions provide scalable power protection to ensure high availability for critical operations.

Send Message
product image
Vertiv 10kVA UPS

A Vertiv 10kVA UPS (Uninterruptible Power Supply) is a reliable power backup system designed to provide uninterrupted power to critical equipment, such as servers, networking devices, and other sensitive electronic systems. The 10kVA rating indicates that the UPS can handle loads of up to 10,000 volt-amperes, which is typically suitable for medium-sized office setups or small data centers. Vertiv (formerly Emerson Network Power) is known for offering high-quality, efficient, and reliable UPS solutions that help prevent downtime and protect equipment from power surges, outages, and other electrical disturbances. Here are some key features you might find in a Vertiv 10kVA UPS: Power Capacity: 10 kVA (or approximately 8 kW for resistive loads), which can support multiple servers or network equipment. Efficiency: Many Vertiv UPS systems are designed with energy efficiency in mind, minimizing energy loss and operating costs. Battery Type: Typically uses either VRLA (Valve Regulated Lead Acid) or Lithium-Ion batteries, providing long-lasting backup time during power interruptions. Form Factor: These systems may come in both rack-mounted or tower configurations, depending on space requirements. Scalability: Some Vertiv UPS units allow for modular expansion, meaning you can add additional units or battery packs to increase power capacity. Monitoring and Control: Advanced models often come with digital monitoring features, allowing remote monitoring of UPS status, battery health, and power consumption via web interfaces or software. Surge Protection and Isolation: Protects your sensitive equipment from power surges, voltage spikes, and electrical noise. Maintenance Bypass: Many UPS models, including 10kVA versions, have maintenance bypass switches that allow you to service the unit without interrupting power to connected devices. Vertiv offers various UPS models in this range, so if you’re looking to purchase, it's important to check specifications for exact features, runtime, and compatibility with your equipment.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message
product image
5 kW solar system installed at nooh school

Universal Power team has installed a 5 kW solar system at nooh school Key Details of the 5 kW Solar System Installation at Nooh School: Solar Power Generation: A 5 kW system typically generates around 20-25 kWh per day depending on sunlight hours and weather conditions. Annual Energy Production: The system could produce around 7, 300 to 9, 125 kWh annually, which can cover a significant portion of the school\'s energy needs. System Components: Solar Panels: Typically, 15-20 panels with a capacity of around 250W-330W each. Inverter: A 5 kW inverter is used to convert the DC power produced by the panels into AC power. Mounting Structure: The solar panels are mounted on the roof or ground, depending on the school\'s infrastructure. Grid Connection: The system is likely connected to the grid, allowing excess energy to be fed back into the grid via net metering, helping reduce electricity costs for the school. Benefits for Nooh School: Cost Savings: The school will benefit from reduced electricity bills by offsetting its grid power usage with solar energy. Sustainability: The system will contribute to a reduction in carbon emissions, helping the school be more environmentally responsible. Educational Opportunity: The solar installation can serve as a live example for students, providing them with a practical demonstration of renewable energy technology. Maintenance: The system requires minimal maintenance, with occasional cleaning of the panels to ensure optimal performance. Panel Lifespan: Solar panels generally last around 25-30 years, with a slight decline in efficiency over time. Inverter Lifespan: Inverters typically last around 10-15 years before needing replacement. Conclusion: The 5 kW solar system installed by Universal Power Team at Nooh School will provide long-term benefits, including reduced electricity costs, environmental sustainability, and educational opportunities for students to learn about solar energy. If more detailed information is needed, contacting Universal Power Team or the school would provide the specifics of the installation.

Send Message

Still searching for
ample runtime?