Noida
+918076792323

'electric and hybrid vehicle battery solutions'

Items tagged with 'electric and hybrid vehicle battery solutions'

product image
12V 7Ah battery

The Amaron Quanta 12V 7Ah battery is a sealed maintenance-free VRLA (Valve Regulated Lead Acid) battery designed for reliable power supply in UPS applications. Key Specifications: Nominal Voltage: 12 Volts Rated Capacity: 7 Ampere Hours Dimensions: 151 mm x 65 mm x 100 mm Weight: Approximately 1.5 kg Warranty: 12 months This battery is suitable for various applications, including UPS systems and emergency lighting. Features: Reliable Functionality: Designed for consistent performance in critical applications. Fast Recharging: Capable of quick recharging to minimize downtime. Sealed Maintenance-Free: No need for regular maintenance, enhancing convenience. Heavy Duty Alloy Construction: Built to withstand deep discharge and overcharge conditions. Applications: UPS Systems: Ideal for providing backup power to computers and other electronic devices. Electric Vehicles: Can be used in electric scooters and other vehicles requiring compact power sources. Medical Equipment: Suitable for powering essential medical devices. Industrial Equipment: Effective in various industrial applications where reliable power is crucial. Warranty Information: Warranty Type: 1 Year Carry-in Warranty Service: Warranty service available at the nearest service center. This battery is widely recognized for its high quality and reliability, making it a popular choice among users needing dependable power solutions.

Send Message
product image
Battery

The Amaron Quanta 12V 7Ah is a sealed lead-acid (SLA) battery commonly used in applications such as backup power systems, uninterruptible power supplies (UPS), security systems, and various other low-power applications. Here\'s a breakdown of its details: Key Specifications: Nominal Voltage: 12 Volts (V) Capacity: 7 Ampere-hours (Ah) at a rate of 20 hours (i.e., the battery can provide 0.35A of current for 20 hours). This is typical for deep-cycle applications, providing reliable performance over an extended period. Battery Type: Sealed Lead-Acid (SLA): Maintenance-free design. Can be installed in any orientation, though upright is recommended for optimal performance. Suitable for both float and cyclic applications. Dimensions: Length: 151 mm (5.94 inches) Width: 65 mm (2.56 inches) Height: 95 mm (3.74 inches) Weight: Approx. 2.3 kg (5.07 lbs) Terminal Type: F1 Faston connectors (0.187” wide), which are commonly used for quick connections. Operating Temperature: Discharge: -15°C to +50°C (5°F to 122°F) Charge: 0°C to +40°C (32°F to 104°F) Float Life: Typically 3-5 years in float (backup power) applications. Self-Discharge: SLA batteries typically have a low self-discharge rate of about 3-5% per month at 25°C, meaning they retain their charge relatively well when not in use for extended periods. Charge Voltage: Standard Charging Voltage: 13.5 to 13.8V (constant voltage charging) Maximum Charging Voltage: 14.4V Recommended Float Charging Voltage: 13.5V Cycle Life: Typically offers about 200-300 cycles at 100% discharge. The cycle life increases with lower depth of discharge (DoD). Applications: UPS Systems: To provide backup power for computers, networking equipment, and other devices. Solar Power Systems: As a small energy storage option in off-grid or backup solar systems. Alarm Systems: For providing power in case of a mains failure. Electric Vehicles & Mobility Scooters: In some cases for small EVs or battery-powered mobility solutions. Power Tools & Other Low Power Systems: To provide compact, reliable energy for tools and other devices. Safety & Maintenance: Maintenance-Free: No need to add water or maintain the electrolyte levels, as the battery is sealed. Overcharge Protection: Built-in mechanisms to prevent overcharging that could lead to damage or overheating. Overcurrent Protection: Built-in to prevent damage due to short circuits or excessive current. Warranty: Typically 1-2 years depending on the brand and country of purchase. Storage & Handling: Storage Temperature: Store in a cool, dry place, ideally between 15°C and 25°C. Do not store in a fully discharged state, as this can significantly reduce the lifespan of the battery. Regular Maintenance: If not in use for extended periods, check the battery voltage periodically and recharge it if necessary. The Amaron Quanta 12V 7Ah battery is designed for reliability and versatility, suitable for a variety of applications that require backup power or a small energy storage solution.

Send Message
product image
Battery

Exide Technologies is a global leader in battery manufacturing, known for high-quality products and advanced battery technology. The company produces batteries for various applications, including automotive, marine, and industrial sectors. Product Range Exide offers a wide range of car batteries suitable for different vehicle types, including: Light Vehicles: Standard batteries for everyday cars. Commercial Vehicles: Heavy-duty batteries designed for trucks and buses. Hybrid and Electric Vehicles: Specialized batteries for modern electric and hybrid cars. Powersport Batteries: Batteries for motorcycles, ATVs, and other recreational vehicles. Battery Types Lead-Acid Batteries: Traditional batteries that are widely used in vehicles. AGM (Absorbent Glass Mat) Batteries: Maintenance-free batteries that provide better performance and longer life. Li-ion Batteries: Advanced lithium-ion batteries for electric and hybrid vehicles, offering higher energy density and efficiency. Battery Finder Tool Exide provides an online tool to help customers find the right battery for their vehicle by entering specific vehicle details or battery specifications. Quality Assurance Exide batteries are manufactured in certified plants across Europe, adhering to the highest Original Equipment Manufacturer (OEM) standards. The company supplies batteries to 75% of vehicle manufacturers, ensuring reliability and quality. Accessories and Support Exide offers a range of accessories, including chargers and testing equipment, to support battery maintenance and replacement. Workshops can access tools and resources to enhance service quality and profitability. Latest Innovations Exide continuously innovates, with recent developments including: Marine & Leisure Li-ion batteries featuring a \'sleep mode\' function for energy efficiency. Recertification of their Marine & Leisure battery range, ensuring compliance with industry standards. Conclusion Exide car batteries are designed to meet the diverse needs of modern vehicles, combining advanced technology with high-quality manufacturing. Their extensive product range, commitment to quality, and innovative solutions make them a trusted choice for consumers and automotive manufacturers alike. For more detailed information, you can visit their official website or use their battery finder tool to select the appropriate battery for your vehicle.

Send Message
product image
Battery Cells In Badh Khalsa Sonipat

Battery Cells are the fundamental building blocks of batteries. They convert chemical energy into electrical energy through electrochemical reactions. Each cell typically consists of an anode, a cathode, an electrolyte, and a separator. Types of Battery Cells Lead-Acid Cells Components: Lead dioxide (cathode), sponge lead (anode), sulfuric acid (electrolyte). Characteristics: Voltage: Typically 2V per cell. Rechargeable: Yes (flooded, AGM, or gel). Applications: Automotive batteries, UPS systems, and backup power. Nickel-Cadmium (NiCd) Cells Components: Nickel hydroxide (cathode), cadmium (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Power tools, emergency lighting, and some medical devices. Nickel-Metal Hydride (NiMH) Cells Components: Nickel hydroxide (cathode), hydrogen-absorbing alloy (anode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.2V per cell. Rechargeable: Yes. Applications: Hybrid vehicles, rechargeable batteries for consumer electronics. Lithium-Ion (Li-ion) Cells Components: Lithium cobalt oxide or lithium iron phosphate (cathode), graphite (anode), lithium salt in organic solvent (electrolyte). Characteristics: Voltage: 3.6V to 3.7V per cell. Rechargeable: Yes. Applications: Smartphones, laptops, electric vehicles, and energy storage systems. Lithium Polymer (LiPo) Cells Components: Similar to Li-ion but use a polymer electrolyte. Characteristics: Voltage: 3.7V per cell. Rechargeable: Yes. Applications: Drones, RC vehicles, and portable devices due to lightweight and flexibility. Alkaline Cells Components: Zinc (anode), manganese dioxide (cathode), potassium hydroxide (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Household devices, flashlights, and remote controls. Zinc-Carbon Cells Components: Zinc (anode), manganese dioxide (cathode), ammonium chloride (electrolyte). Characteristics: Voltage: 1.5V per cell. Non-rechargeable (disposable). Applications: Low-drain devices like clocks and toys. Components of Battery Cells Anode: The negative electrode where oxidation occurs. Cathode: The positive electrode where reduction takes place. Electrolyte: A medium that allows ionic movement between the anode and cathode. Separator: A barrier that prevents direct contact between anode and cathode while allowing ionic flow. Characteristics of Battery Cells Voltage: The electric potential difference; varies by cell type. Capacity: Measured in Ampere-hours (Ah), indicates how much charge a battery can store. Energy Density: Amount of energy stored per unit volume or weight, typically measured in Wh/kg. Cycle Life: Number of charge/discharge cycles before capacity drops significantly. Self-Discharge Rate: Rate at which a battery loses its charge when not in use. Applications of Battery Cells Consumer Electronics: Smartphones, laptops, tablets. Automotive: Electric vehicles, hybrid vehicles, starting batteries. Industrial: Forklifts, backup power for servers and telecommunications. Renewable Energy: Solar energy storage systems and grid storage. Portable Devices: Cameras, drones, and power tools. Conclusion Battery cells are essential components in various applications, providing energy storage and supply. Understanding the types, characteristics, and applications helps in selecting the right battery for specific needs. Always consider factors like voltage, capacity, and intended use when working with batteries.

Send Message
product image
Exide 12V 26Ah SMF Battery In Alawapur Bawal

The Exide 12V 26Ah SMF (Sealed Maintenance Free) battery is designed for reliable power in various applications, including UPS systems, solar power setups, and backup power solutions. Here are the key details: Specifications: Voltage: 12 Volts Capacity: 26 Ah (Ampere-hours) Type: Sealed Maintenance Free (SMF) Chemistry: Lead-acid (VRLA - Valve Regulated Lead Acid) Dimensions: Approximately 166 mm (L) x 175 mm (W) x 125 mm (H) (dimensions may vary slightly by model) Weight: Around 7.0 to 8.0 kg Features: Maintenance-Free: No need to add water or check electrolyte levels. Leak-Proof Design: Safe operation in various orientations without risk of leakage. Long Service Life: Built for durability and reliable performance. High Discharge Rate: Capable of delivering quick bursts of power for demanding applications. Applications: Uninterruptible Power Supplies (UPS) Solar energy systems Emergency lighting Security systems Small electric vehicles and mobility aids Charging Recommendations: Charging Voltage: Generally between 14.4 to 15.0 volts. Charging Current: Should not exceed 2.6A for optimal battery lifespan. Storage and Maintenance: Store in a cool, dry environment. Ensure the battery is fully charged if not in use for extended periods. Regularly inspect for any signs of damage or wear. Safety Precautions: Avoid short-circuiting the terminals. Handle carefully to prevent physical damage. Follow all manufacturer instructions for safe use. For the most accurate information, always refer to the specific product datasheet or manufacturer guidelines related to your model.

Send Message
product image
Amaron Car Battery

Amaron is also known for manufacturing high-quality car batteries. Their car batteries are designed to provide reliable performance, longer life, and are known for being maintenance-free. Here's a breakdown of the key features of Amaron Car Batteries: Key Features of Amaron Car Batteries: Maintenance-Free: Most of Amaron's car batteries are maintenance-free, meaning you don't need to top up the water level regularly, making them hassle-free to use. Long Life: Amaron batteries are built for longevity. They use advanced technology in their manufacturing process to ensure they last longer than standard car batteries. High Cranking Power: Amaron batteries are designed to offer high cranking power, which is important for starting your car, especially in extreme weather conditions. Durability: Amaron batteries are built to withstand the challenges of extreme heat and cold, making them durable and reliable in all kinds of climates. Vibration Resistance: The batteries are designed to be resistant to vibrations, which is important for vehicles that are driven on rough roads. Better Performance: Amaron batteries are equipped with advanced lead-calcium alloy technology, improving the overall performance and reliability of the battery. Warranty: Amaron offers a good warranty on its car batteries, generally ranging from 24 months to 48 months, depending on the model. Types of Amaron Car Batteries: Amaron Go: A popular line for regular cars and entry-level vehicles, offering solid performance at a competitive price. Amaron Flo: Known for its low-maintenance and enhanced performance features, ideal for newer cars with more advanced electrical systems. Amaron Pro: Designed for more premium cars or those with additional electrical demands, providing extra cranking power and extended life. Amaron Quanta: A high-performance option for commercial vehicles and larger applications. Benefits: Wide Range: Amaron has a broad selection of car batteries that suit various vehicle models and sizes. Reliable Performance: Their batteries provide consistent performance and are known for being able to withstand heavy use. Low Self-Discharge Rate: These batteries maintain charge longer, even when the car isn't used for an extended period.

Send Message
product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message

Still searching for
electric and hybrid vehicle battery solutions?