Noida
+918076792323

'minimal power conditioning'

Items tagged with 'minimal power conditioning'

product image
6 KVA POWERBANK

The Vertiv 6kVA PowerBank UPS is typically part of Vertiv's On-Line or Line-Interactive power protection solutions that integrate battery backup systems designed to maintain a continuous supply of power in the event of an outage. These UPS systems are ideal for applications where consistent power quality and uptime are critical, such as for medium to large businesses, IT infrastructure, and high-demand environments like data centers. Although "PowerBank" is a brand name or marketing term used by Vertiv for specific models of UPS systems (often focused on extended battery runtimes or integrated external batteries), detailed product specifications and the exact model can vary. Below is a general overview of the Vertiv 6kVA PowerBank UPS based on the series features typically associated with Vertiv's offerings. Key Features and Specifications: 1. Topology: Double Conversion On-Line: Provides the highest level of protection by continuously filtering and conditioning the incoming utility power. It delivers pure sinewave output, making it suitable for sensitive equipment that requires high-quality power. The On-Line topology ensures zero transfer time in case of power failure because the UPS system is always supplying power from the inverter. 2. Power Rating: 6kVA / 6000VA (Provides backup for medium-sized systems or higher power applications like small-to-medium server rooms, network systems, and critical equipment). 3. Output Power: Output Power: 4.8 kW to 5.4 kW (depending on load and configuration) 4. Input and Output Specifications: Input Voltage: 110V - 300V, wide input range for handling fluctuations without switching to battery mode. Output Voltage: 230V ± 2% (standard in most countries) 5. Waveform Type: Pure Sinewave Output: Ensures that the connected equipment receives a smooth and continuous power supply without the distortions found in some lower-quality UPS systems. 6. Battery Configuration: Battery Type: Typically Sealed Lead-Acid (SLA) or Valve-Regulated Lead-Acid (VRLA) batteries. Battery Capacity: Typically, 12V batteries with 18Ah, 24Ah, or higher capacities. The system may include external battery modules (Battery Banks) for extended runtime, making it suitable for larger power demands and longer backup times. External Battery Packs: Some models support additional external battery cabinets, which allow the UPS to run longer during extended outages. This is especially important for environments where power failures may last for an extended period. 7. Charging Time: Typically, the system will fully recharge in around 4-6 hours, depending on battery size and environmental conditions. 8. Backup Time (Runtime): The backup time can range from 20 minutes to several hours, depending on the load. For example, a 50% load (about 3 kVA or 3000W) will generally offer a longer runtime. A full load of 6kVA will typically provide 10-15 minutes of backup time. If the UPS is configured with external battery packs, the runtime can be extended for much longer periods, making it ideal for critical systems that require extended protection during power outages. 9. Cooling System: The UPS is equipped with fan-assisted cooling to ensure efficient heat dissipation and prevent overheating during extended use. 10. Display and Monitoring: LCD Display: Displays real-time information about UPS status, battery health, load capacity, input/output voltages, battery runtime, and other important parameters. Audible Alarms: Alerts for conditions such as low battery, overload, power failure, and system faults. Smart Battery Management: Ensures optimal battery health and extends the lifespan of the UPS. 11. Connectivity and Interfaces: USB/Serial Ports: For communication with a connected computer or server for monitoring and management. SNMP Slots: Some models may offer SNMP (Simple Network Management Protocol) support for remote monitoring and management via networked devices. Dry Contact Interface: Allows integration with building management or alert systems. Optional Software: Available for automated shutdown in the event of prolonged power outages, and event logging. 12. Form Factor: Tower or Rackmount (depending on the specific model and user preferences). Some models are available in rackmount configurations for server rooms and data centers, while others are more suitable for a tower setup. 13. Additional Features: Overload Protection: Safeguards against exceeding the UPS's rated capacity. Short-Circuit Protection: Provides defense against electrical faults. Automatic Voltage Regulation (AVR): Ensures that the UPS compensates for voltage fluctuations (e.g., brownouts or overvoltages) without resorting to battery backup.

Send Message
product image
3 KVA

SB MODEL & LB MODEL The Vertiv 3kVA UPS models in the SB (Standby) and LB (Line-Interactive) series are designed to provide power protection and backup for medium-sized equipment or small-to-medium office environments, server rooms, and critical infrastructure. Below are the detailed specifications and features for each of these series in the 3kVA range. 1. Vertiv 3kVA SB (Standby) Series UPS The SB Series for 3kVA is a basic uninterruptible power supply solution. The Standby topology is typically the most cost-effective option, ideal for environments that require minimal backup time and surge protection without sophisticated power regulation. Key Features: Topology: Standby (Off-line) UPS Power Rating: 3kVA / 3000VA Output Power: 1800W - 2400W (varies by model) Input Voltage: 160V - 280V (wide voltage range) Output Voltage: 230V ± 10% (standard for most regions) Waveform Type: Simulated Sinewave (approximate sinewave output) Battery Type: Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) Battery Capacity: 12V, 9Ah, 12Ah, or higher (depending on model) Charging Time: Typically 4-8 hours for a full charge Backup Time (Runtime): Provides backup for 5-20 minutes depending on load (e.g., 60-70% load) Cooling: Fan-assisted cooling for heat dissipation Interfaces: USB/Serial ports (some models include monitoring software) Form Factor: Typically Tower form factor Additional Features: Surge protection (for protection against power spikes) Overload protection and short-circuit protection Battery and overload indicators (LED and audible alarms) Optional software for remote monitoring and automatic shutdown Compact design for easier deployment in small-to-medium businesses, home offices, or workstations Ideal Use Case: Home offices and small businesses needing reliable backup power and surge protection Low power devices like workstations, point-of-sale (POS) systems, small networking equipment Environments where minimal power conditioning and voltage regulation are required 2. Vertiv 3kVA LB (Line-Interactive) Series UPS The LB Series for 3kVA uses a Line-Interactive topology, providing more advanced protection and efficiency, making it ideal for environments where power quality and stability are essential. The line-interactive design offers better Automatic Voltage Regulation (AVR), correcting voltage fluctuations without switching to battery power. Key Features: Topology: Line-Interactive Power Rating: 3kVA / 3000VA Output Power: 2100W - 2700W (varies by model) Input Voltage: 140V - 300V (wider input range compared to the SB series) Output Voltage: 230V ± 10% (standard for most regions) Waveform Type: Simulated Sinewave (or Pure Sinewave on some models) Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: Typically 12V, 9Ah, 12Ah, or higher (depending on model) Charging Time: 4-6 hours to fully charge the battery Backup Time (Runtime): 10-30 minutes depending on the load (e.g., for 50-60% load) Cooling: Fan-assisted cooling Interfaces: USB/Serial ports (for monitoring and management software) Form Factor: Tower or Rackmount (depending on the specific model) Additional Features: Automatic Voltage Regulation (AVR): Corrects minor voltage fluctuations without using battery power Cold Start Capability: Can start without mains power (useful during power failures) LCD Display (on some models) to show real-time UPS status, battery level, and load information Overload, short-circuit, and low-battery protection Smart battery management for enhanced performance and extended battery life Audible alarms for power events (e.g., low battery, overload, fault) Smart monitoring and remote management with optional software for logging events and automatic shutdown during extended power outages Ideal Use Case: Small-to-medium-sized servers, network equipment, and critical infrastructure requiring more advanced power protection Environments needing consistent power quality, such as server rooms, medical equipment, and point-of-sale systems Small businesses with sensitive equipment that requires more stable voltage levels and longer backup time

Send Message
product image
UPS ( Uninterrupted Power Supplies)

UPS ( Uninterrupted Power Supplies) An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels. The on-battery run-time of most uninterruptible power sources is relatively short (only a few minutes) but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system. Features of UPS Systems: Line Interactive Range in 600VA and 2000VA with minimal battery backup. We have an online range of UPSs in 1,2 and 3 kVA category both with an internal battery backup of 10 minutes and with a longer battery backup of up to 4 hours. We offer a mini range of UPSs of capacities 6,10 and 20 kVA with options of internal isolation transformers both in single-phase and three-phase options. We have an ITA series of Hitech UPS systems in the range of 6 to 40 kVA. Hiplulse U series of UPS range with internal isolation transformers essentially meant for industrial applications.

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
solar panel

A solar panel is a device that converts sunlight into electricity using photovoltaic (PV) cells. Here's a quick summary: Types: Monocrystalline: High efficiency, long lifespan, more expensive. Polycrystalline: Lower efficiency, cheaper. Thin-film: Lightweight, flexible, lower efficiency, cheaper. How It Works: Sunlight hits the PV cells, generating electrical current (DC), which is converted into AC power by an inverter for household use. Benefits: Renewable energy source. Reduces electricity bills. Environmentally friendly (low carbon footprint). Low maintenance. Can be paired with battery storage for energy independence. Lifespan: Most panels last 25-30 years with minimal maintenance. Efficiency: Varies from 10% to 22%, with monocrystalline being the most efficient. Installation: Requires site assessment, permits, and professional installation.

Send Message
product image
Amaron FLO Battery

The Amaron FLO series is a range of maintenance-free sealed lead-acid (SLA) batteries designed for high performance and long life. Key features include: Technology: Utilizes Lead Carbon technology for enhanced charge acceptance and longer cycle life. Maintenance-Free: Sealed design, no need to add water. Fast Recharge: Efficient charging with faster recharge times. Durability: Performs well in extreme temperatures and environments. Applications: Commonly used in UPS systems, inverters, telecommunications, and automotive systems. Available Voltage: 12V Capacity: Ranges from 7Ah to 150Ah depending on the model. Amaron FLO batteries are ideal for deep cycle applications, providing reliable backup power with minimal maintenance.

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Amaron GO BATTERY IN DELHI

Amaron GO Car Battery is one of the popular car batteries offered by Amaron, known for its reliable performance, durability, and long lifespan. Here’s a detailed overview of the Amaron GO car battery: Key Features of Amaron GO Car Battery: Technology: Advanced Lead-Acid Technology: The Amaron GO uses lead-acid technology, which is widely used for automotive batteries due to its affordability and effectiveness. HVR (High Vibration Resistance): Designed to withstand high vibrations typically found in modern vehicles, ensuring a longer life even in challenging conditions. Capacity and Voltage: The Amaron GO series offers a wide range of car battery capacities to fit different types of vehicles, typically ranging from 35Ah to 70Ah or higher, with a nominal voltage of 12V. Enhanced Performance: Long Life: Amaron GO batteries are designed for long-lasting performance, offering up to 48 months of warranty (depending on model and usage). Low Maintenance: The Amaron GO is a maintenance-free battery, meaning you don’t need to top it up with water, unlike traditional flooded lead-acid batteries. Leakproof: The battery is designed to prevent leakage, which is a common issue with old or poorly maintained batteries. Durability: Heat Resistance: The Amaron GO car batteries are built to handle extreme weather conditions, making them suitable for both hot and cold climates. Vibration Resistance: With its vibration-resistant design, the battery can last longer even in vehicles that experience high levels of vibration, such as SUVs and trucks. Quick Start Power: The Amaron GO battery is designed to provide strong cranking power for reliable engine starts, even in cold weather conditions. Its quick recharge capability allows your vehicle to return to full charge efficiently. Warranty: Warranty: Typically, the Amaron GO series comes with a 48-month warranty, including a 24-month free replacement and 24-month pro-rata. This warranty may vary depending on your region and the specific model. Applications: Personal Cars: Suitable for most types of personal vehicles like sedans, hatchbacks, and SUVs. Commercial Vehicles: Can also be used for light commercial vehicles, depending on the specific capacity and requirements. Specifications (for a typical Amaron GO battery): Voltage: 12V Capacity: 35Ah, 40Ah, 50Ah, 60Ah, 70Ah (depending on the vehicle model) Cold Cranking Amps (CCA): This varies by battery model, typically ranging from 400 to 650 CCA for vehicles that require more starting power. Warranty: 48 months (subject to terms and conditions). Dimensions: Varies by capacity, but typically around 240mm (L) x 175mm (W) x 190mm (H). Weight: Between 9kg and 20kg, depending on the capacity. Advantages: Maintenance-Free: No need to add water or perform regular maintenance. Reliability: Known for excellent reliability, ensuring consistent performance throughout the year. Long Life and Durability: High durability even in extreme conditions, with a long lifespan and reduced chances of failure. Environmentally Friendly: Made using recyclable materials and follows the necessary environmental standards. Disadvantages: Initial Cost: Amaron batteries might have a higher upfront cost compared to some budget-friendly alternatives, but their longevity and performance can make them a good value over time. Conclusion: The Amaron GO Car Battery is a great choice for vehicle owners looking for a reliable, long-lasting, and maintenance-free battery. Whether you have a compact car, an SUV, or a commercial vehicle, the Amaron GO offers excellent starting power, durability, and performance. With a strong warranty and minimal maintenance requirements, it is a solid option for anyone in need of a quality automotive battery.

Send Message
product image
5 kW solar system installed at nooh school

Universal Power team has installed a 5 kW solar system at nooh school Key Details of the 5 kW Solar System Installation at Nooh School: Solar Power Generation: A 5 kW system typically generates around 20-25 kWh per day depending on sunlight hours and weather conditions. Annual Energy Production: The system could produce around 7, 300 to 9, 125 kWh annually, which can cover a significant portion of the school\'s energy needs. System Components: Solar Panels: Typically, 15-20 panels with a capacity of around 250W-330W each. Inverter: A 5 kW inverter is used to convert the DC power produced by the panels into AC power. Mounting Structure: The solar panels are mounted on the roof or ground, depending on the school\'s infrastructure. Grid Connection: The system is likely connected to the grid, allowing excess energy to be fed back into the grid via net metering, helping reduce electricity costs for the school. Benefits for Nooh School: Cost Savings: The school will benefit from reduced electricity bills by offsetting its grid power usage with solar energy. Sustainability: The system will contribute to a reduction in carbon emissions, helping the school be more environmentally responsible. Educational Opportunity: The solar installation can serve as a live example for students, providing them with a practical demonstration of renewable energy technology. Maintenance: The system requires minimal maintenance, with occasional cleaning of the panels to ensure optimal performance. Panel Lifespan: Solar panels generally last around 25-30 years, with a slight decline in efficiency over time. Inverter Lifespan: Inverters typically last around 10-15 years before needing replacement. Conclusion: The 5 kW solar system installed by Universal Power Team at Nooh School will provide long-term benefits, including reduced electricity costs, environmental sustainability, and educational opportunities for students to learn about solar energy. If more detailed information is needed, contacting Universal Power Team or the school would provide the specifics of the installation.

Send Message

Still searching for
minimal power conditioning?