Noida
+918076792323

'system stability'

Items tagged with 'system stability'

product image
Amaron Quanta 12v 42Ah Battery

The Amaron Quanta 42Ah (Ampere-hour) battery is a high-performance, maintenance-free lead-acid battery designed for use in UPS systems, inverters, and solar energy storage applications. It provides reliable power backup for a range of devices, especially in environments where power stability and uninterrupted performance are crucial. Key Features of Amaron Quanta 42Ah Battery: Capacity: 42Ah (Ampere-hour) – This means the battery can provide 42 amps of current for one hour, or a proportionally smaller amount of current over a longer period of time, depending on the load. Technology: Maintenance-Free: The Amaron Quanta series batteries are sealed lead-acid batteries (SLA) that do not require frequent maintenance or water refilling, making them very convenient and hassle-free. High Performance: Designed for high efficiency, the Amaron Quanta 42Ah battery offers good charge retention, ensuring long-lasting backup for your UPS or inverter. Deep Cycle Battery: This is a deep-cycle battery, meaning it is designed to handle deeper discharges compared to regular car batteries. It is well-suited for applications where the battery may be discharged and recharged frequently. Durability: Long Shelf Life: Amaron Quanta batteries have a good shelf life and can perform well over extended periods when properly stored. High-Temperature Tolerance: They are built to withstand a wide range of temperatures, making them suitable for varying environmental conditions. Design: Compact and Reliable: The battery is designed to be compact, reliable, and easy to install, especially in environments where space is a concern. Vibration Resistant: The battery is engineered to resist damage from vibration, ensuring its durability in various settings. Safety Features: Flame-Retardant Materials: The Amaron Quanta 42Ah battery uses flame-retardant materials to ensure safety in case of battery malfunction. Leak-Proof: Being a sealed battery, it minimizes the risk of acid leakage, which adds an extra layer of safety. Application Areas: UPS Systems: Provides backup power to computers, servers, and networking equipment. Inverter Systems: Used in residential and small commercial applications to ensure uninterrupted power during outages. Solar Energy Storage: Can be used as part of a solar energy storage system to store excess energy generated during the day for use at night. Warranty: The Amaron Quanta batteries often come with a 2-year warranty, depending on the region and purchase conditions. It is recommended to check with the seller or manufacturer for specific warranty details. General Specifications: Voltage: 12V (standard for most UPS and inverter batteries). Capacity: 42Ah. Type: Sealed Lead-Acid (SLA) or AGM (Absorbent Glass Mat). Charging Voltage: Typically around 14.4 to 15.0V for 12V batteries. Nominal Voltage: 12V. Dimensions: Typically around length: 200mm, width: 165mm, height: 175mm (varies slightly depending on specific model). Weight: Approximately 12-14 kg. Maintenance Tips for the Amaron Quanta 42Ah Battery: Regular Charging: Always ensure that the battery is fully charged and avoid discharging it completely to extend its lifespan. Storage: If you’re storing the battery for an extended period, make sure to store it in a cool, dry place and check the charge level periodically. Clean the Terminals: Ensure the terminals are clean and free of corrosion. Clean the terminals with a mixture of baking soda and water if needed. Avoid Overcharging: Always use a compatible charger to avoid overcharging the battery, which could damage it. Check for Leakage: While the battery is sealed, it's a good idea to check for any leaks, especially if the battery has been in use for a long time or is showing signs of wear. Battery Testing: To check the health of the Amaron Quanta 42Ah battery, you can follow these steps: Voltage Check: Use a voltmeter to check the voltage. A fully charged 12V battery should show between 12.6V to 12.8V. Load Test: Under load, if the voltage drops rapidly below 10.5V for a 12V battery, it may be a sign of degradation. Capacity Test: If your application requires it, you can perform a discharge test to check the battery's capacity. This involves discharging the battery with a known load and measuring how long it takes for the voltage to drop below a certain threshold. Conclusion: The Amaron Quanta 42Ah battery is a reliable and durable option for providing backup power in various applications, including UPS systems, inverters, and solar power storage. It offers maintenance-free operation, a long service life, and excellent temperature tolerance. By regularly maintaining and testing the battery, you can ensure that it continues to perform effectively over time.

Send Message
product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
10 kW solar system installed at M3M

Universal Power team has installed a 10 kW solar system 18 panel at M3M Key Details of the Installation: Solar System Size: 10 kW refers to the capacity of the solar system. This means the system is designed to generate up to 10 kilowatts (kW) of power under optimal sunlight conditions. Number of Panels: 18 solar panels have been installed. To estimate the power output of each panel, we can divide the system\'s total capacity by the number of panels. 10 kW / 18 panels = approximately 555 watts per panel. This indicates that each panel is likely rated around 555W, which is a common wattage for high-efficiency solar panels used in residential and commercial systems. Location – M3M: M3M could be a residential complex, office building, or another commercial facility. Without more specific information, M3M could refer to the area or project where the installation took place. If it’s a large-scale installation, such as for an office or commercial building, the solar panels are likely being used to reduce energy costs and carbon footprint. Energy Production: The energy output of the system will depend on several factors, including the amount of sunlight received, panel orientation, and local weather conditions. In an area with good sunlight, a 10 kW system could produce roughly 40-50 kWh per day on average, depending on the solar irradiance and hours of sunlight in that region. Over a year, this could amount to around 14, 600 to 18, 250 kWh of electricity. Purpose: The solar power system could be installed for various reasons: To reduce energy bills by using clean solar energy. To support sustainability goals, reduce carbon emissions, and make the building or facility more energy-efficient. To provide backup power or support the grid, especially in commercial or industrial settings. Benefits of a 10 kW Solar System: Reduced Electricity Costs: By producing energy from the sun, the system reduces reliance on grid power, thus lowering electricity bills over time. Environmental Impact: The system helps reduce carbon footprints by utilizing renewable energy instead of fossil fuels. Increased Property Value: Properties with solar installations are often valued higher due to the long-term savings on energy costs. Government Incentives: Depending on the region, there may be tax credits, subsidies, or incentives available for installing solar energy systems.

Send Message
product image
5 kW solar system installed at nooh school

Universal Power team has installed a 5 kW solar system at nooh school Key Details of the 5 kW Solar System Installation at Nooh School: Solar Power Generation: A 5 kW system typically generates around 20-25 kWh per day depending on sunlight hours and weather conditions. Annual Energy Production: The system could produce around 7, 300 to 9, 125 kWh annually, which can cover a significant portion of the school\'s energy needs. System Components: Solar Panels: Typically, 15-20 panels with a capacity of around 250W-330W each. Inverter: A 5 kW inverter is used to convert the DC power produced by the panels into AC power. Mounting Structure: The solar panels are mounted on the roof or ground, depending on the school\'s infrastructure. Grid Connection: The system is likely connected to the grid, allowing excess energy to be fed back into the grid via net metering, helping reduce electricity costs for the school. Benefits for Nooh School: Cost Savings: The school will benefit from reduced electricity bills by offsetting its grid power usage with solar energy. Sustainability: The system will contribute to a reduction in carbon emissions, helping the school be more environmentally responsible. Educational Opportunity: The solar installation can serve as a live example for students, providing them with a practical demonstration of renewable energy technology. Maintenance: The system requires minimal maintenance, with occasional cleaning of the panels to ensure optimal performance. Panel Lifespan: Solar panels generally last around 25-30 years, with a slight decline in efficiency over time. Inverter Lifespan: Inverters typically last around 10-15 years before needing replacement. Conclusion: The 5 kW solar system installed by Universal Power Team at Nooh School will provide long-term benefits, including reduced electricity costs, environmental sustainability, and educational opportunities for students to learn about solar energy. If more detailed information is needed, contacting Universal Power Team or the school would provide the specifics of the installation.

Send Message
product image
10 kW solar system installed at Parashuram Eye Hospital

10 kW solar Universal Power team has installed a 10 kW solar system at Parashuram Eye Hospital. Key Details of the 10 kW Solar System Installation: Solar Power Generation: A 10 kW system typically generates about 40-50 kWh per day, depending on the location and weather conditions. This translates to 14,600 to 18,250 kWh annually, which will help the hospital meet a significant portion of its energy needs. System Components: Solar Panels: Around 25-30 panels, each with a capacity of 330W-400W. Inverter: A 10 kW inverter is used to convert the DC electricity from the panels into AC electricity for hospital use. Mounting System: Panels are mounted on the roof or ground depending on the hospital's infrastructure. Grid Connection: The system is connected to the grid, allowing the hospital to export excess energy to the grid through net metering. Benefits for Parashuram Eye Hospital: Cost Reduction: The solar system will reduce the hospital's dependence on grid electricity, leading to lower monthly electricity bills. Sustainability: The hospital will be contributing to environmental sustainability by utilizing renewable energy, which helps reduce its carbon footprint. Energy Independence: The system ensures a reliable power source, especially during peak hours or grid outages. Maintenance: Solar panels require minimal maintenance, with periodic cleaning to ensure maximum efficiency. Lifespan: Solar panels typically last 25-30 years, and the inverter may need replacement after 10-15 years. Conclusion: The installation of a 10 kW on-grid solar power system at Parashuram Eye Hospital by Universal Power Team will provide long-term benefits in terms of cost savings, energy independence, and environmental impact. It’s an excellent step towards sustainable energy usage for the hospital. If you need more specific details about this installation, it would be best to contact Universal Power Team or the hospital directly.

Send Message
product image
Maintenance Tips for UPS Systems and Batteries​

Maintaining your Uninterruptible Power Supply (UPS) system and its batteries is crucial for ensuring reliable performance and extending their lifespan. Here are some essential maintenance tips: 1. Regular Inspection Visual Checks: Inspect the UPS and batteries for any signs of physical damage, leaks, or corrosion. Connections: Ensure that all connections are secure and free from dust and corrosion. 2. Battery Maintenance Battery Testing: Regularly test the batteries for capacity and performance. Use a battery tester to check voltage and load. Clean Terminals: Keep battery terminals clean and free from corrosion. Use a mixture of baking soda and water to clean any corrosion, and ensure terminals are dry before reconnecting. Check Electrolyte Levels: For flooded lead-acid batteries, check the electrolyte levels regularly and top up with distilled water as needed. 3. Environmental Considerations Temperature Control: Keep the UPS and batteries in a cool, dry environment. High temperatures can reduce battery life significantly. Ventilation: Ensure proper ventilation around the UPS to prevent overheating. Avoid placing it in enclosed spaces without airflow. 4. Regular Testing Self-Test: Perform regular self-tests to ensure the UPS is functioning correctly. Most UPS systems have a built-in self-test feature. Load Testing: Conduct load tests periodically to ensure the UPS can handle the required load during a power outage. 5. Firmware and Software Updates Keep Software Updated: Regularly check for and install firmware updates for your UPS. This can improve performance and security. Monitoring Software: Use UPS monitoring software to track performance metrics and receive alerts for any issues. 6. Battery Replacement Follow Manufacturer Guidelines: Replace batteries according to the manufacturer\'s recommendations, typically every 3-5 years for lead-acid batteries. Dispose of Batteries Properly: Follow local regulations for the disposal of batteries to ensure environmental safety. 7. Load Management Avoid Overloading: Ensure that the total load connected to the UPS does not exceed its rated capacity. This can lead to overheating and reduced battery life. Balanced Load: Distribute the load evenly across all outlets to prevent any single outlet from being overloaded. 8. Documentation Keep Records: Maintain a log of maintenance activities, battery replacements, and any issues encountered. This can help in troubleshooting and planning future maintenance. 9. Professional Maintenance Schedule Professional Inspections: Consider having a qualified technician perform regular inspections and maintenance, especially for larger UPS systems. 10. User Training Educate Staff: Train staff on the proper use and maintenance of the UPS system, including how to respond in case of a power outage.

Send Message
product image
6 KVA UPS

The Vertiv 6kVA UPS models are available in both the SB (Standby) and LB (Line-Interactive) series, as well as other more advanced series, such as the On-Line (Double Conversion) series, which are designed for higher power loads and more demanding applications. Below is a breakdown of the 6kVA UPS options from Vertiv, highlighting the SB, LB, and other potential variants, including their key features, specifications, and ideal use cases. Vertiv 6kVA LB (Line-Interactive) Series UPS The LB Series for 6kVA is more advanced than the SB Series, using a Line-Interactive topology that corrects voltage fluctuations without switching to battery power. This is ideal for environments where power stability is critical, and provides more reliable protection for sensitive equipment. Key Features: Topology: Line-Interactive Power Rating: 6kVA / 6000VA Output Power: 4200W - 5400W (depending on model) Input Voltage: 140V - 300V (wider input range than SB series) Output Voltage: 230V ± 10% Waveform Type: Simulated Sinewave (or Pure Sinewave, depending on model) Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: 12V, 18Ah, 24Ah, or higher (depending on model) Charging Time: 4-6 hours for full charge Backup Time (Runtime): 10-30 minutes depending on load (e.g., 50-70% load) Cooling: Fan-assisted cooling for high-efficiency operation Interfaces: USB/Serial ports (with optional software for remote monitoring and automatic shutdown) Form Factor: Tower or Rackmount (depending on specific model) Additional Features: Automatic Voltage Regulation (AVR): Helps correct voltage fluctuations (e.g., brownouts or surges) without using battery power Cold Start: Can be turned on without mains power (useful during power failures) LCD/LED Display (on some models): Real-time monitoring of UPS status, battery level, load capacity, etc. Overload, short-circuit, and low-battery protection Smart battery management to extend battery life and improve performance Audible alarms for low battery, overload, and fault events Advanced monitoring and remote management (via optional software) Ideal Use Case: Small-to-medium-sized servers, network equipment, and critical business infrastructure Medical equipment, point-of-sale (POS) systems, and sensitive electronics requiring stable power quality IT infrastructure in small businesses needing both battery backup and protection against power fluctuations Vertiv 6kVA On-Line (Double Conversion) Series UPS The On-Line (Double Conversion) series is the most robust and efficient series, providing true double-conversion power protection. This topology is designed to offer continuous clean and stable power to sensitive equipment, protecting it from all power disturbances including blackouts, brownouts, and voltage surges. Key Features: Topology: On-Line (Double Conversion) Power Rating: 6kVA / 6000VA Output Power: 4800W - 5400W (depending on the model) Input Voltage: 110V - 300V (wide input range) Output Voltage: 230V ± 2% (pure sinewave output) Waveform Type: Pure Sinewave Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: Typically 12V, 18Ah, or 24Ah, with external battery options for longer runtimes Charging Time: 4-6 hours for full charge Backup Time (Runtime): 20-40 minutes depending on load (e.g., 50-60% load) Cooling: Advanced fan-assisted cooling with efficient heat dissipation Interfaces: USB/Serial ports, RS-232, SNMP for remote monitoring and management Form Factor: Tower or Rackmount Additional Features: Double Conversion: Provides continuous, clean power from the UPS’s inverter, ensuring zero transfer time during power disturbances High Efficiency Mode: Switches to energy-efficient operation during stable power conditions while ensuring seamless transition to double conversion during power failure LCD/LED Display: Provides real-time status of the UPS, battery health, load capacity, etc. Remote Monitoring: Integrated SNMP or optional software for proactive monitoring and automated shutdown Overload and short-circuit protection Extended Battery Options: External battery packs for longer runtime in high-demand applications

Send Message
product image
3 KVA

SB MODEL & LB MODEL The Vertiv 3kVA UPS models in the SB (Standby) and LB (Line-Interactive) series are designed to provide power protection and backup for medium-sized equipment or small-to-medium office environments, server rooms, and critical infrastructure. Below are the detailed specifications and features for each of these series in the 3kVA range. 1. Vertiv 3kVA SB (Standby) Series UPS The SB Series for 3kVA is a basic uninterruptible power supply solution. The Standby topology is typically the most cost-effective option, ideal for environments that require minimal backup time and surge protection without sophisticated power regulation. Key Features: Topology: Standby (Off-line) UPS Power Rating: 3kVA / 3000VA Output Power: 1800W - 2400W (varies by model) Input Voltage: 160V - 280V (wide voltage range) Output Voltage: 230V ± 10% (standard for most regions) Waveform Type: Simulated Sinewave (approximate sinewave output) Battery Type: Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) Battery Capacity: 12V, 9Ah, 12Ah, or higher (depending on model) Charging Time: Typically 4-8 hours for a full charge Backup Time (Runtime): Provides backup for 5-20 minutes depending on load (e.g., 60-70% load) Cooling: Fan-assisted cooling for heat dissipation Interfaces: USB/Serial ports (some models include monitoring software) Form Factor: Typically Tower form factor Additional Features: Surge protection (for protection against power spikes) Overload protection and short-circuit protection Battery and overload indicators (LED and audible alarms) Optional software for remote monitoring and automatic shutdown Compact design for easier deployment in small-to-medium businesses, home offices, or workstations Ideal Use Case: Home offices and small businesses needing reliable backup power and surge protection Low power devices like workstations, point-of-sale (POS) systems, small networking equipment Environments where minimal power conditioning and voltage regulation are required 2. Vertiv 3kVA LB (Line-Interactive) Series UPS The LB Series for 3kVA uses a Line-Interactive topology, providing more advanced protection and efficiency, making it ideal for environments where power quality and stability are essential. The line-interactive design offers better Automatic Voltage Regulation (AVR), correcting voltage fluctuations without switching to battery power. Key Features: Topology: Line-Interactive Power Rating: 3kVA / 3000VA Output Power: 2100W - 2700W (varies by model) Input Voltage: 140V - 300V (wider input range compared to the SB series) Output Voltage: 230V ± 10% (standard for most regions) Waveform Type: Simulated Sinewave (or Pure Sinewave on some models) Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: Typically 12V, 9Ah, 12Ah, or higher (depending on model) Charging Time: 4-6 hours to fully charge the battery Backup Time (Runtime): 10-30 minutes depending on the load (e.g., for 50-60% load) Cooling: Fan-assisted cooling Interfaces: USB/Serial ports (for monitoring and management software) Form Factor: Tower or Rackmount (depending on the specific model) Additional Features: Automatic Voltage Regulation (AVR): Corrects minor voltage fluctuations without using battery power Cold Start Capability: Can start without mains power (useful during power failures) LCD Display (on some models) to show real-time UPS status, battery level, and load information Overload, short-circuit, and low-battery protection Smart battery management for enhanced performance and extended battery life Audible alarms for power events (e.g., low battery, overload, fault) Smart monitoring and remote management with optional software for logging events and automatic shutdown during extended power outages Ideal Use Case: Small-to-medium-sized servers, network equipment, and critical infrastructure requiring more advanced power protection Environments needing consistent power quality, such as server rooms, medical equipment, and point-of-sale systems Small businesses with sensitive equipment that requires more stable voltage levels and longer backup time

Send Message
product image
UPS

The Vertiv 300kVA UPS (Uninterruptible Power Supply) is designed to provide reliable power protection for critical applications. Here are the key details: Key Features Power Capacity: 300 kVA (kilovolt-amperes) capacity, suitable for large-scale operations. Topology: Typically utilizes a double-conversion online topology, ensuring continuous power supply and high efficiency. Input Voltage Range: Designed to handle a wide input voltage range, which helps in maintaining stability during voltage fluctuations. Output Voltage: Standard output voltage options, often configurable to meet specific requirements. Efficiency: High efficiency ratings, often exceeding 95% in online mode, which helps in reducing operational costs. Technical Specifications Dimensions: Compact design for easy installation in various environments. Weight: Hefty weight due to robust construction, ensuring durability. Cooling System: Advanced cooling mechanisms to maintain optimal operating temperatures. Battery Type: Typically uses VRLA (Valve Regulated Lead Acid) or Lithium-ion batteries, depending on the model. Runtime: Configurable runtime options based on battery capacity and load requirements. Monitoring and Management User Interface: LCD display for real-time monitoring of UPS status, battery health, and load levels. Remote Management: Capable of integration with network management systems for remote monitoring and control. Alarms and Notifications: Equipped with alarm systems to alert users of any issues or maintenance needs. Applications Data Centers: Ideal for protecting critical IT infrastructure. Telecommunications: Ensures continuous operation of communication systems. Industrial Applications: Supports manufacturing processes that require uninterrupted power. Maintenance and Support Service Options: Various service plans available, including preventive maintenance and emergency support. Warranty: Standard warranty options, with extended warranties available for additional peace of mind. Conclusion The Vertiv 300kVA UPS is a robust solution for organizations requiring reliable power protection. Its combination of high capacity, efficiency, and advanced monitoring features makes it suitable for a variety of critical applications. For more detailed specifications and options, you may refer to the official Vertiv website or product catalog.

Send Message

Still searching for
system stability?