Delhi
+918076792323

'heat load'

Items tagged with 'heat load'

product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Emerson 3-Phase Ups In Manesar

Emerson 3-Phase UPS (Uninterruptible Power Supply) systems are high-quality, reliable power backup solutions typically used in industrial, commercial, and critical infrastructure applications. These systems are designed to provide uninterrupted power to sensitive equipment, preventing downtime due to power interruptions, voltage fluctuations, or other electrical issues. Key Features of Emerson 3-Phase UPS: Power Capacity: 3-Phase UPS systems come in a wide range of power capacities, generally from 10 kVA to 800 kVA or even higher, depending on the model. Suitable for medium to large-scale facilities like data centers, hospitals, manufacturing plants, and office buildings. Technology: Double Conversion Online Technology: Emerson’s 3-phase UPS systems typically use online double conversion technology, meaning that the inverter constantly supplies clean, regulated power to the load while the battery is charging. Efficiency: High-efficiency models (up to 96% or more) reduce energy consumption and operating costs. Battery Management: Integrated advanced battery management for monitoring health, charge, and backup times. High Availability: Designed to provide reliable power for mission-critical applications. Hot Swappable Batteries: In some models, batteries can be replaced without shutting down the UPS, ensuring uninterrupted power supply. Scalability: Many models allow for modular expansion, meaning you can add additional capacity as needed. Input/Output Voltage: Input Voltage: Common input voltages are 380V, 400V, and 415V (3-phase). Output Voltage: Typically 208V, 220V, 230V, or 400V for 3-phase systems, depending on the regional power grid standards. Power Factor: Emerson UPS systems usually have a high power factor of 0.9 or higher, improving efficiency. Advanced Features: LCD/LED Display: Provides real-time data on UPS status, battery health, load levels, and alarms for easy monitoring. Remote Monitoring: Allows remote access for monitoring via web or SNMP (Simple Network Management Protocol) for real-time alerts and diagnostics. Bypass Capability: If maintenance is required or the UPS is malfunctioning, the system can transfer to bypass mode to avoid downtime. Design and Durability: Compact Design: Many models are designed to be space-efficient without compromising on power or cooling needs. Rack-Mountable or Tower Formats: Depending on the installation space, Emerson offers both tower-style and rack-mounted designs. Thermal Management: These UPS systems typically include advanced cooling systems to maintain efficient operation and prevent overheating. Applications: Data Centers: Ensures uptime for servers and networking equipment. Industrial Equipment: Protects critical machinery and automated systems from power failures. Telecommunications: Keeps communication systems running without interruption. Hospitals: Supports life-saving equipment and systems that require constant power. Commercial Buildings: Ensures backup power for office systems and equipment. Maintenance and Service: Smart Battery Testing: Advanced systems monitor the health of batteries and alert users when maintenance or replacement is required. Serviceable Parts: Emerson provides comprehensive support and service contracts to ensure your UPS remains in optimal condition. Proactive Monitoring: With remote monitoring and diagnostic tools, faults can be detected before they impact operations. Popular Models: Emerson (now part of Vertiv) offers various UPS models under different series, such as: Vertiv Liebert® ITA2: A high-efficiency 3-phase UPS solution for small to medium-sized applications. Vertiv Liebert® EXL S1: A modular UPS system that offers scalability and high availability. Vertiv Liebert® NXL: A large capacity 3-phase UPS designed for data centers and industrial applications. Advantages of Emerson 3-Phase UPS: High Reliability: Ensures critical equipment remains powered during power failures or fluctuations. Advanced Technology: Features like online double conversion, modular design, and remote monitoring provide superior performance and flexibility. Energy Efficiency: Many Emerson UPS systems are highly efficient, reducing operating costs and environmental impact. Scalability: As your power requirements grow, Emerson's modular systems can easily expand to meet increased demand. Conclusion: Emerson 3-Phase UPS systems are excellent solutions for businesses and facilities that require high uptime and reliability. With their advanced features, efficient energy use, and robust design, they provide essential power protection for critical infrastructure. Whether you're in need of a UPS for a small office or a large data center, Emerson offers scalable and reliable power backup systems that ensure uninterrupted operation.

Send Message
product image
Maintenance Tips for UPS Systems and Batteries​

Maintaining your Uninterruptible Power Supply (UPS) system and its batteries is crucial for ensuring reliable performance and extending their lifespan. Here are some essential maintenance tips: 1. Regular Inspection Visual Checks: Inspect the UPS and batteries for any signs of physical damage, leaks, or corrosion. Connections: Ensure that all connections are secure and free from dust and corrosion. 2. Battery Maintenance Battery Testing: Regularly test the batteries for capacity and performance. Use a battery tester to check voltage and load. Clean Terminals: Keep battery terminals clean and free from corrosion. Use a mixture of baking soda and water to clean any corrosion, and ensure terminals are dry before reconnecting. Check Electrolyte Levels: For flooded lead-acid batteries, check the electrolyte levels regularly and top up with distilled water as needed. 3. Environmental Considerations Temperature Control: Keep the UPS and batteries in a cool, dry environment. High temperatures can reduce battery life significantly. Ventilation: Ensure proper ventilation around the UPS to prevent overheating. Avoid placing it in enclosed spaces without airflow. 4. Regular Testing Self-Test: Perform regular self-tests to ensure the UPS is functioning correctly. Most UPS systems have a built-in self-test feature. Load Testing: Conduct load tests periodically to ensure the UPS can handle the required load during a power outage. 5. Firmware and Software Updates Keep Software Updated: Regularly check for and install firmware updates for your UPS. This can improve performance and security. Monitoring Software: Use UPS monitoring software to track performance metrics and receive alerts for any issues. 6. Battery Replacement Follow Manufacturer Guidelines: Replace batteries according to the manufacturer\'s recommendations, typically every 3-5 years for lead-acid batteries. Dispose of Batteries Properly: Follow local regulations for the disposal of batteries to ensure environmental safety. 7. Load Management Avoid Overloading: Ensure that the total load connected to the UPS does not exceed its rated capacity. This can lead to overheating and reduced battery life. Balanced Load: Distribute the load evenly across all outlets to prevent any single outlet from being overloaded. 8. Documentation Keep Records: Maintain a log of maintenance activities, battery replacements, and any issues encountered. This can help in troubleshooting and planning future maintenance. 9. Professional Maintenance Schedule Professional Inspections: Consider having a qualified technician perform regular inspections and maintenance, especially for larger UPS systems. 10. User Training Educate Staff: Train staff on the proper use and maintenance of the UPS system, including how to respond in case of a power outage.

Send Message
product image
Eaton 9395P UPS

The Eaton 9395P UPS is a high-performance uninterruptible power supply designed for critical applications. It features a three-phase online design with power ratings ranging from 250 to 1200 kVA, utilizing advanced technology for high efficiency and scalability. Key Specifications Power Ratings: 250-1200 kVA Input Voltage: Typically 480V, with options for 400V or 600V Efficiency: High double conversion efficiency with reduced energy losses Battery Types: Supports VRLA, AGM, and wet cell batteries Overload Capacity: 110% for 10 minutes, 125% for 2 minutes, 150% for 15 seconds Display: 7” or 10” touchscreen for monitoring and control Features Modular Design: Allows for easy scalability and maintenance. Advanced Monitoring: Provides real-time data and alerts for optimal performance. Compact Footprint: Designed to maximize power density in limited spaces. Applications Ideal for data centers, telecommunications, and industrial environments where reliable power is critical. For more detailed specifications, you can refer to the official Eaton documentation. ### Additional Features Energy Saver System (ESS): Achieves up to 99% efficiency, significantly reducing operational costs. Three-Level Converter Design: Reduces stress on components, extending their lifespan and reliability. Heat Reduction: Produces 33% less heat, leading to lower HVAC costs. Increased Power Density: Offers up to 20% more power in the same footprint compared to previous models. Redundancy: Modular design ensures inherent redundancy, preventing dropped loads. Battery Information Battery System: External battery systems are used, with options for lead-acid or lithium batteries. Batteries Included: Typically, batteries are not included and must be purchased separately. Lead Time Availability: Estimated lead time for delivery is 20+ weeks, depending on configuration and order specifics. Target Markets Enterprise Data Centers: Provides robust power protection for critical IT infrastructure. Colocation Facilities: Supports multiple clients with varying power needs. Server Farms and Telecommunications: Ensures uptime for essential services and applications. Healthcare and Financial Systems: Protects sensitive equipment and data from power interruptions. Conclusion The Eaton 9395P UPS is engineered for high efficiency and reliability, making it an excellent choice for organizations that require uninterrupted power supply. Its modular design, advanced features, and scalability cater to a wide range of applications, ensuring that critical systems remain operational during power disturbances. For further details, consult the official Eaton website or authorized distributors.

Send Message
product image
Battery

The Amaron 200Ah Current Tall Tubular Inverter Battery (AR200TT54) is a popular choice for home and small office power backup solutions. It is known for its long-lasting performance and is designed to support high power demands while offering reliable service for inverters. Here\'s a detailed breakdown of the features and specifications of this battery: Key Features: Battery Type: Tubular Lead Acid Battery – Known for better deep-cycle performance and durability as compared to flat-plate batteries. It is especially suited for areas with long and frequent power outages. Capacity: 200 Ah (Ampere-Hours) – This indicates the total charge the battery can hold, with 200 Ah being suitable for larger inverters or longer power backup requirements. Design: Tall Tubular Design – The tubular design enhances performance and life span as it offers better heat dissipation and reduces the chances of plate corrosion. Technology: Amaron\'s proprietary technology – Utilizes advanced battery design and manufacturing processes that provide greater resistance to overcharging, longer life, and higher efficiency. Maintenance: Low maintenance – The battery comes with an advanced grid technology and corrosion-resistant components, which minimizes the need for constant maintenance. Long Life: Longer battery life – The tubular design and advanced technology help extend the life of the battery compared to other types of lead-acid batteries, making it a reliable long-term investment. High Durability: Durable in high temperatures – It performs well in high-temperature conditions, making it suitable for regions with hot climates. Deep Discharge Recovery: Deep discharge tolerance – This battery can tolerate deep discharges and can recover from them effectively, making it more reliable when the power goes out for extended periods. Warranty: Typically comes with a 2-year warranty (may vary depending on the dealer or region), which ensures that the battery is protected against manufacturing defects. Performance Considerations: Backup Time: The backup time depends on the load connected to the inverter. A 200Ah battery typically supports moderate to heavy loads for up to 6-8 hours depending on inverter efficiency and power usage. Charging Time: Generally, a fully discharged 200Ah battery will take 8–12 hours to charge completely, depending on the charging system’s capacity. Applications: Home UPS Systems: Ideal for homes with moderate to heavy power usage. Inverters: Works well with most domestic and industrial inverters. Solar Systems: Can be used for off-grid and hybrid solar setups. Small Offices/Commercial Use: Suitable for locations that require a stable and reliable power backup. Pros: Long-lasting: The tubular design offers superior longevity compared to other types of batteries. Higher Charge Retention: Better charge retention ensures less frequent charging. Corrosion Resistance: Advanced technology ensures that the plates are protected from corrosion, which can extend the battery life. Cons: Weight: As a high-capacity lead-acid battery, it is heavy and might require more effort during installation. Space Requirements: It may require a bit more space compared to flat plate batteries due to its larger size. Conclusion: The Amaron AR200TT54 200Ah inverter battery is an excellent choice for those who need a high-capacity, durable, and low-maintenance backup solution. Whether you are using it for residential, commercial, or solar power applications, it provides long-term performance and reliability in all kinds of power outage scenarios.

Send Message
product image
2kva ups repair

Vertiv (formerly Emerson Network Power) is a leading provider of uninterruptible power supply (UPS) systems, power management, and thermal management solutions. Vertiv\'s UPS systems, including models with 2kVA capacity, are widely used in homes, offices, and small businesses to provide reliable power backup during grid power failures or fluctuations. When a Vertiv 2kVA UPS encounters issues, it may require repair, either due to a malfunctioning component or wear-and-tear over time. Here’s an overview of common problems, repair procedures, and troubleshooting steps for Vertiv 2kVA UPS repair: Common Problems in Vertiv 2kVA UPS UPS Not Turning On Possible Causes: Faulty battery or dead battery Blown fuse or circuit breaker Power supply input issue (fuse or switch) Repair Action: Check and replace the battery if necessary. Inspect the fuse or circuit breaker and replace if blown. Verify the input power connections. Frequent Switching to Battery Mode Possible Causes: Input power fluctuations or poor power quality Battery failure or degraded battery capacity UPS in bypass mode due to an internal fault Repair Action: Test the incoming voltage using a multimeter to ensure it’s within the UPS input range. Check the battery voltage; if it\'s low, consider replacing the battery. Check if the UPS is in bypass mode and reset it if necessary. UPS Not Charging the Battery Possible Causes: Faulty charger circuit Bad battery connections or corroded terminals Defective charging board Repair Action: Inspect battery terminals for corrosion and clean them. Test the charging voltage and check for proper charging circuit operation. If the charger board is defective, it may need to be replaced. Overheating and Shutdown Possible Causes: Overloaded UPS (too many devices connected) Poor ventilation or blocked air vents Faulty cooling fan Repair Action: Disconnect unnecessary devices and reduce the load. Ensure the UPS has proper ventilation and airflow around it. Check the fan for functionality; replace if faulty. UPS Producing Beeping Sound Possible Causes: Low battery Overload condition Internal fault or failure of components Repair Action: Replace or recharge the battery if it’s low. Disconnect some load if the UPS is overloaded. If the beeping persists, perform a deeper diagnostic of internal components (inverter, rectifier, etc.). Output Voltage Issues (Distorted or Incorrect Voltage) Possible Causes: Faulty inverter or rectifier circuit Problem with the output transformer Faulty output relay or PCB Repair Action: Measure the output voltage and compare it with the rated output. Inspect the inverter and rectifier circuits for any faults or blown components. Check the PCB for signs of damage or burnt components.

Send Message
product image
6 KVA POWERBANK

The Vertiv 6kVA PowerBank UPS is typically part of Vertiv's On-Line or Line-Interactive power protection solutions that integrate battery backup systems designed to maintain a continuous supply of power in the event of an outage. These UPS systems are ideal for applications where consistent power quality and uptime are critical, such as for medium to large businesses, IT infrastructure, and high-demand environments like data centers. Although "PowerBank" is a brand name or marketing term used by Vertiv for specific models of UPS systems (often focused on extended battery runtimes or integrated external batteries), detailed product specifications and the exact model can vary. Below is a general overview of the Vertiv 6kVA PowerBank UPS based on the series features typically associated with Vertiv's offerings. Key Features and Specifications: 1. Topology: Double Conversion On-Line: Provides the highest level of protection by continuously filtering and conditioning the incoming utility power. It delivers pure sinewave output, making it suitable for sensitive equipment that requires high-quality power. The On-Line topology ensures zero transfer time in case of power failure because the UPS system is always supplying power from the inverter. 2. Power Rating: 6kVA / 6000VA (Provides backup for medium-sized systems or higher power applications like small-to-medium server rooms, network systems, and critical equipment). 3. Output Power: Output Power: 4.8 kW to 5.4 kW (depending on load and configuration) 4. Input and Output Specifications: Input Voltage: 110V - 300V, wide input range for handling fluctuations without switching to battery mode. Output Voltage: 230V ± 2% (standard in most countries) 5. Waveform Type: Pure Sinewave Output: Ensures that the connected equipment receives a smooth and continuous power supply without the distortions found in some lower-quality UPS systems. 6. Battery Configuration: Battery Type: Typically Sealed Lead-Acid (SLA) or Valve-Regulated Lead-Acid (VRLA) batteries. Battery Capacity: Typically, 12V batteries with 18Ah, 24Ah, or higher capacities. The system may include external battery modules (Battery Banks) for extended runtime, making it suitable for larger power demands and longer backup times. External Battery Packs: Some models support additional external battery cabinets, which allow the UPS to run longer during extended outages. This is especially important for environments where power failures may last for an extended period. 7. Charging Time: Typically, the system will fully recharge in around 4-6 hours, depending on battery size and environmental conditions. 8. Backup Time (Runtime): The backup time can range from 20 minutes to several hours, depending on the load. For example, a 50% load (about 3 kVA or 3000W) will generally offer a longer runtime. A full load of 6kVA will typically provide 10-15 minutes of backup time. If the UPS is configured with external battery packs, the runtime can be extended for much longer periods, making it ideal for critical systems that require extended protection during power outages. 9. Cooling System: The UPS is equipped with fan-assisted cooling to ensure efficient heat dissipation and prevent overheating during extended use. 10. Display and Monitoring: LCD Display: Displays real-time information about UPS status, battery health, load capacity, input/output voltages, battery runtime, and other important parameters. Audible Alarms: Alerts for conditions such as low battery, overload, power failure, and system faults. Smart Battery Management: Ensures optimal battery health and extends the lifespan of the UPS. 11. Connectivity and Interfaces: USB/Serial Ports: For communication with a connected computer or server for monitoring and management. SNMP Slots: Some models may offer SNMP (Simple Network Management Protocol) support for remote monitoring and management via networked devices. Dry Contact Interface: Allows integration with building management or alert systems. Optional Software: Available for automated shutdown in the event of prolonged power outages, and event logging. 12. Form Factor: Tower or Rackmount (depending on the specific model and user preferences). Some models are available in rackmount configurations for server rooms and data centers, while others are more suitable for a tower setup. 13. Additional Features: Overload Protection: Safeguards against exceeding the UPS's rated capacity. Short-Circuit Protection: Provides defense against electrical faults. Automatic Voltage Regulation (AVR): Ensures that the UPS compensates for voltage fluctuations (e.g., brownouts or overvoltages) without resorting to battery backup.

Send Message
product image
6 KVA UPS

The Vertiv 6kVA UPS models are available in both the SB (Standby) and LB (Line-Interactive) series, as well as other more advanced series, such as the On-Line (Double Conversion) series, which are designed for higher power loads and more demanding applications. Below is a breakdown of the 6kVA UPS options from Vertiv, highlighting the SB, LB, and other potential variants, including their key features, specifications, and ideal use cases. Vertiv 6kVA LB (Line-Interactive) Series UPS The LB Series for 6kVA is more advanced than the SB Series, using a Line-Interactive topology that corrects voltage fluctuations without switching to battery power. This is ideal for environments where power stability is critical, and provides more reliable protection for sensitive equipment. Key Features: Topology: Line-Interactive Power Rating: 6kVA / 6000VA Output Power: 4200W - 5400W (depending on model) Input Voltage: 140V - 300V (wider input range than SB series) Output Voltage: 230V ± 10% Waveform Type: Simulated Sinewave (or Pure Sinewave, depending on model) Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: 12V, 18Ah, 24Ah, or higher (depending on model) Charging Time: 4-6 hours for full charge Backup Time (Runtime): 10-30 minutes depending on load (e.g., 50-70% load) Cooling: Fan-assisted cooling for high-efficiency operation Interfaces: USB/Serial ports (with optional software for remote monitoring and automatic shutdown) Form Factor: Tower or Rackmount (depending on specific model) Additional Features: Automatic Voltage Regulation (AVR): Helps correct voltage fluctuations (e.g., brownouts or surges) without using battery power Cold Start: Can be turned on without mains power (useful during power failures) LCD/LED Display (on some models): Real-time monitoring of UPS status, battery level, load capacity, etc. Overload, short-circuit, and low-battery protection Smart battery management to extend battery life and improve performance Audible alarms for low battery, overload, and fault events Advanced monitoring and remote management (via optional software) Ideal Use Case: Small-to-medium-sized servers, network equipment, and critical business infrastructure Medical equipment, point-of-sale (POS) systems, and sensitive electronics requiring stable power quality IT infrastructure in small businesses needing both battery backup and protection against power fluctuations Vertiv 6kVA On-Line (Double Conversion) Series UPS The On-Line (Double Conversion) series is the most robust and efficient series, providing true double-conversion power protection. This topology is designed to offer continuous clean and stable power to sensitive equipment, protecting it from all power disturbances including blackouts, brownouts, and voltage surges. Key Features: Topology: On-Line (Double Conversion) Power Rating: 6kVA / 6000VA Output Power: 4800W - 5400W (depending on the model) Input Voltage: 110V - 300V (wide input range) Output Voltage: 230V ± 2% (pure sinewave output) Waveform Type: Pure Sinewave Battery Type: Sealed Lead-Acid (SLA) or VRLA Battery Capacity: Typically 12V, 18Ah, or 24Ah, with external battery options for longer runtimes Charging Time: 4-6 hours for full charge Backup Time (Runtime): 20-40 minutes depending on load (e.g., 50-60% load) Cooling: Advanced fan-assisted cooling with efficient heat dissipation Interfaces: USB/Serial ports, RS-232, SNMP for remote monitoring and management Form Factor: Tower or Rackmount Additional Features: Double Conversion: Provides continuous, clean power from the UPS’s inverter, ensuring zero transfer time during power disturbances High Efficiency Mode: Switches to energy-efficient operation during stable power conditions while ensuring seamless transition to double conversion during power failure LCD/LED Display: Provides real-time status of the UPS, battery health, load capacity, etc. Remote Monitoring: Integrated SNMP or optional software for proactive monitoring and automated shutdown Overload and short-circuit protection Extended Battery Options: External battery packs for longer runtime in high-demand applications

Send Message

Still searching for
heat load?