Gurugram
+918076792323

'deep discharging'

Items tagged with 'deep discharging'

product image
Amaron Quanta 12v 42Ah Battery

The Amaron Quanta 42Ah (Ampere-hour) battery is a high-performance, maintenance-free lead-acid battery designed for use in UPS systems, inverters, and solar energy storage applications. It provides reliable power backup for a range of devices, especially in environments where power stability and uninterrupted performance are crucial. Key Features of Amaron Quanta 42Ah Battery: Capacity: 42Ah (Ampere-hour) – This means the battery can provide 42 amps of current for one hour, or a proportionally smaller amount of current over a longer period of time, depending on the load. Technology: Maintenance-Free: The Amaron Quanta series batteries are sealed lead-acid batteries (SLA) that do not require frequent maintenance or water refilling, making them very convenient and hassle-free. High Performance: Designed for high efficiency, the Amaron Quanta 42Ah battery offers good charge retention, ensuring long-lasting backup for your UPS or inverter. Deep Cycle Battery: This is a deep-cycle battery, meaning it is designed to handle deeper discharges compared to regular car batteries. It is well-suited for applications where the battery may be discharged and recharged frequently. Durability: Long Shelf Life: Amaron Quanta batteries have a good shelf life and can perform well over extended periods when properly stored. High-Temperature Tolerance: They are built to withstand a wide range of temperatures, making them suitable for varying environmental conditions. Design: Compact and Reliable: The battery is designed to be compact, reliable, and easy to install, especially in environments where space is a concern. Vibration Resistant: The battery is engineered to resist damage from vibration, ensuring its durability in various settings. Safety Features: Flame-Retardant Materials: The Amaron Quanta 42Ah battery uses flame-retardant materials to ensure safety in case of battery malfunction. Leak-Proof: Being a sealed battery, it minimizes the risk of acid leakage, which adds an extra layer of safety. Application Areas: UPS Systems: Provides backup power to computers, servers, and networking equipment. Inverter Systems: Used in residential and small commercial applications to ensure uninterrupted power during outages. Solar Energy Storage: Can be used as part of a solar energy storage system to store excess energy generated during the day for use at night. Warranty: The Amaron Quanta batteries often come with a 2-year warranty, depending on the region and purchase conditions. It is recommended to check with the seller or manufacturer for specific warranty details. General Specifications: Voltage: 12V (standard for most UPS and inverter batteries). Capacity: 42Ah. Type: Sealed Lead-Acid (SLA) or AGM (Absorbent Glass Mat). Charging Voltage: Typically around 14.4 to 15.0V for 12V batteries. Nominal Voltage: 12V. Dimensions: Typically around length: 200mm, width: 165mm, height: 175mm (varies slightly depending on specific model). Weight: Approximately 12-14 kg. Maintenance Tips for the Amaron Quanta 42Ah Battery: Regular Charging: Always ensure that the battery is fully charged and avoid discharging it completely to extend its lifespan. Storage: If you’re storing the battery for an extended period, make sure to store it in a cool, dry place and check the charge level periodically. Clean the Terminals: Ensure the terminals are clean and free of corrosion. Clean the terminals with a mixture of baking soda and water if needed. Avoid Overcharging: Always use a compatible charger to avoid overcharging the battery, which could damage it. Check for Leakage: While the battery is sealed, it's a good idea to check for any leaks, especially if the battery has been in use for a long time or is showing signs of wear. Battery Testing: To check the health of the Amaron Quanta 42Ah battery, you can follow these steps: Voltage Check: Use a voltmeter to check the voltage. A fully charged 12V battery should show between 12.6V to 12.8V. Load Test: Under load, if the voltage drops rapidly below 10.5V for a 12V battery, it may be a sign of degradation. Capacity Test: If your application requires it, you can perform a discharge test to check the battery's capacity. This involves discharging the battery with a known load and measuring how long it takes for the voltage to drop below a certain threshold. Conclusion: The Amaron Quanta 42Ah battery is a reliable and durable option for providing backup power in various applications, including UPS systems, inverters, and solar power storage. It offers maintenance-free operation, a long service life, and excellent temperature tolerance. By regularly maintaining and testing the battery, you can ensure that it continues to perform effectively over time.

Send Message
product image
Powerstack battery Testing

Powerstack batteries, typically used in UPS systems, inverters, and other energy storage applications, require proper testing and maintenance to ensure their efficiency, longevity, and reliability. If you need to perform battery testing on a Powerstack battery, here's a general guide for testing and monitoring its condition: Steps to Test Powerstack Batteries: 1. Visual Inspection Check for Physical Damage: Inspect the battery casing for any cracks, leaks, or bulges. Damaged batteries should be replaced. Clean the Terminals: Ensure the terminals are clean and free from corrosion. If there is any corrosion, clean the terminals with a mixture of baking soda and water. 2. Check Battery Voltage Measure the Open-Circuit Voltage (OCV): Use a digital voltmeter to measure the voltage across the battery terminals when it is not connected to any load. Compare the measured voltage to the battery’s rated voltage. A typical fully charged 12V lead-acid battery should read around 12.6 to 12.8 volts. For a 24V battery, you should see a voltage of around 25.2 to 26.0 volts. Undercharged Battery: If the voltage is significantly lower (e.g., 10.5V or less for a 12V battery), it may indicate that the battery is undercharged or faulty. 3. Load Testing Test under Load: Apply a load to the battery, simulating its normal working conditions. The load can be an inverter or UPS system that draws power from the battery. Monitor the voltage drop under load. The voltage should not drop drastically; otherwise, it may indicate that the battery is aging or weak. DC Discharge Test: If you have access to a battery analyzer or tester, you can perform a discharge test by applying a constant load and measuring the time it takes for the battery to reach a certain voltage cutoff. 4. Battery Charge Test Charge the Battery Fully: Use the manufacturer’s recommended charger to fully charge the battery. Most Powerstack systems will charge to full capacity in 6-12 hours, depending on the charger and battery size. Monitor Charging Parameters: If the battery doesn’t charge properly or takes longer than usual, it might indicate problems with the battery or the charger. End of Charge Voltage: For lead-acid batteries, the end-of-charge voltage should be around 14.4 to 15.0 volts for a 12V battery and 28.8 to 30.0 volts for a 24V battery. 5. Conduct a Specific Gravity Test (for Lead-Acid Batteries) Hydrometer Test: If your Powerstack battery is a lead-acid type, you can measure the specific gravity of the electrolyte inside the battery using a hydrometer. A fully charged battery will have a specific gravity of around 1.265 – 1.280. If the reading is low, it may indicate that one or more cells are faulty. 6. Perform a Battery Health Check (Advanced) Use a Battery Tester: There are advanced battery testers that can measure the internal resistance, capacity, and health of the battery. These testers usually simulate various load conditions and measure how well the battery performs. Internal Resistance: A higher internal resistance indicates aging and reduced capacity. A proper battery tester will show you this resistance reading, which helps in assessing the battery's remaining life. 7. Monitor for Temperature Batteries can heat up during charging and discharging. Check for unusual temperature rises that may indicate internal problems. Excessive heat can degrade battery life and may signal an issue with the battery or the charging system. Signs of a Failing Battery: Rapid Voltage Drop: If the voltage quickly drops under load, the battery is likely deteriorating. Short Runtime: If the battery runs out of charge much faster than expected, it could mean it's near the end of its life. Inconsistent Voltage Readings: Large fluctuations in voltage readings, especially when under load, can indicate a failing battery. Physical Damage: Swelling, leaks, or any visible damage to the battery indicates that it needs to be replaced. Battery Maintenance Tips: Regular Charging: Avoid deep discharges and always keep the battery charged. Environmental Conditions: Keep the battery in a cool, dry place to avoid overheating or damage due to extreme temperatures. Periodic Tests: Test the battery every 3-6 months to assess its health and ensure it’s functioning properly. Use the Right Charger: Always use the manufacturer's recommended charger to prevent overcharging or undercharging. Conclusion: Battery testing is critical for ensuring that your Powerstack battery continues to perform optimally. Regular testing helps in identifying potential problems early and maintaining the battery’s health. Always follow the manufacturer’s instructions and consult with a professional if you're unsure about the testing process.

Send Message
product image
Luminous Ups

The Luminous LD30KH-PRO is a high-performance Inverter designed to provide reliable backup power for homes, offices, and small commercial setups. It is a part of Luminous' Pure Sine Wave Inverter series, offering high efficiency and stable power supply to sensitive equipment like computers, refrigerators, air conditioners, and other appliances. Here are the key features and specifications of the Luminous LD30KH-PRO: Key Features: Power Capacity: 30 kVA (Kilovolt-Ampere) – It is designed to support large power loads, making it suitable for medium to large residential, commercial, or industrial applications. Pure Sine Wave Output: Provides clean and stable output voltage, ensuring that sensitive equipment (like computers, air conditioners, and medical equipment) operates without issues, such as noise or voltage fluctuations. High Efficiency: The inverter operates with high efficiency, which reduces power loss and ensures that more of the battery's energy is used to power connected appliances. Advanced Microprocessor Technology: The inverter uses a microprocessor-based design to ensure high performance, protection, and reliability. It optimizes charging and discharging cycles, as well as load management. User-Friendly LCD Display: It comes with an intuitive LCD display that shows important information such as battery status, power usage, input and output voltage, and fault conditions. This helps users easily monitor and manage the system. Wide Input Voltage Range: The inverter operates with a wide input voltage range, which helps it perform well under varying input conditions. This feature helps protect connected equipment from power surges and fluctuations. Multiple Protection Mechanisms: Built-in protection features include overload protection, short-circuit protection, deep discharge protection, and battery reverse polarity protection, which ensures the safety of the connected equipment. Battery Compatibility: The Luminous LD30KH-PRO is compatible with both lead-acid and lithium-ion batteries, giving users flexibility depending on their preferences for battery technology. Smart Battery Management: The inverter comes with intelligent battery management to optimize battery performance, extending their lifespan and ensuring safe charging and discharging cycles. Compact and Reliable Design: Designed with a compact form factor and a durable build, the inverter is ideal for both indoor and outdoor installations and can be used for both backup power and off-grid applications. Applications: Residential Homes – For providing backup power for large appliances like air conditioners, refrigerators, lighting, and electronics. Small and Medium Businesses – For ensuring uninterrupted power supply to computers, servers, and other essential equipment. Commercial Use – Ideal for large offices, small industries, and workshops. Rural/Off-Grid Areas – Can be used in places with frequent power outages or no access to the grid, providing a reliable power solution. Specifications Summary: Rated Capacity: 30 kVA Output Type: Pure Sine Wave Input Voltage: 120V – 300V (depending on model) Charging Current: Adjustable (depends on load) Display: LCD with detailed status updates Battery Compatibility: Compatible with lead-acid and lithium-ion batteries

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message
product image
Battery

The Amaron 12V 200Ah SMF (Sealed Maintenance Free) battery is designed for various applications, including industrial use, telecommunications, and backup power systems. Here are the key details: Specifications Voltage: 12V Capacity: 200Ah Type: Sealed Maintenance Free (SMF) Lead-Acid Battery Technology: Advanced Lead-Calcium technology, ensuring better performance and longer life. Key Features Maintenance-Free: No need for regular topping up of electrolyte, reducing maintenance efforts. High Durability: Designed to withstand extreme conditions, ensuring reliable performance. Vibration Resistant: Built to endure vibrations, making it suitable for use in vehicles and industrial settings. Long Shelf Life: Offers extended shelf life due to low self-discharge rates. Deep Discharge Capability: Suitable for applications requiring deep cycling. Applications Telecommunications: Power backup for telecom networks and equipment. UPS Systems: Used in uninterruptible power supply systems for critical applications. Solar Energy Systems: Can be utilized in renewable energy setups for storage. Industrial Use: Suitable for powering machinery and equipment. Physical Characteristics Dimensions: Approx. 510 mm x 220 mm x 220 mm (length x width x height) (specific dimensions may vary). Weight: Around 60 kg (may vary by manufacturer). Terminal Type: Typically, lead or brass terminals for secure connections. Safety Features Valve-Regulated: Prevents leakage and spillage, enhancing safety during operation. Overload Protection: Designed to handle overcharging and discharging conditions safely. Warranty Amaron batteries often come with a warranty period ranging from 18 months to 2 years, depending on the specific model and application. Maintenance Tips While SMF batteries require minimal maintenance, it’s essential to keep the terminals clean and ensure proper ventilation during operation. Conclusion The Amaron 12V 200Ah SMF battery is a reliable and efficient power solution for a variety of applications, combining high performance with low maintenance needs. For specific pricing, availability, and additional information, it’s recommended to consult authorized dealers or the official Amaron website.

Send Message
product image
Amaron batteries Testing In Haiderpur Delhi

Testing Amaron batteries, or any lead-acid batteries, involves a few key procedures to assess their performance and health. Here are the common methods: 1. Visual Inspection Check for Damage: Look for any cracks, leaks, or bulges in the casing. Terminals: Ensure that the terminals are clean and free of corrosion. 2. Voltage Test Using a Multimeter: Measure the voltage across the battery terminals. A fully charged 12V battery should read around 12.6 to 12.8 volts. A reading below 12.4 volts indicates that the battery may be partially discharged, and below 12.0 volts typically means it needs charging. 3. Load Test Using a Load Tester: Apply a load that is about half of the battery's rated capacity (for a 46Ah battery, use a 23A load) for about 10-15 seconds. Voltage Drop: Measure the voltage during the load test. It should not drop below 9.6 volts. A significant drop indicates a weak battery. 4. Specific Gravity Test Hydrometer: If the battery is serviceable, use a hydrometer to check the specific gravity of the electrolyte. Readings: A specific gravity of around 1.265 indicates a fully charged state, while lower readings suggest a need for charging. 5. State of Charge (SOC) Charging and Discharging Cycles: Monitor how well the battery holds its charge over multiple cycles. A significant drop in capacity indicates aging or damage. 6. Internal Resistance Test Impedance Tester: This specialized equipment measures the internal resistance of the battery. Higher resistance can indicate degradation. 7. Temperature Check Surface Temperature: During charging and discharging, ensure the battery doesn’t get excessively hot. Overheating can indicate problems. 8. Cycle Testing Deep Cycle Applications: If used in deep cycle applications, monitor performance over multiple charge-discharge cycles to assess capacity retention. Safety Precautions Always wear protective gear when handling batteries. Work in a well-ventilated area to avoid gas buildup. Follow manufacturer guidelines for testing and maintenance. Regular testing can help ensure optimal performance and extend the lifespan of your Amaron battery.

Send Message
product image
Amaron Quanta 12V 46Ah battery In Garhi Harsaru Gurgaon

The Amaron Quanta 12V 46Ah battery is designed primarily for use in a variety of applications, including inverters and backup power systems. Here are the key details: Specifications: Voltage: 12V Capacity: 46Ah (Ampere-hours) Type: Lead-acid battery, generally maintenance-free Technology: Often uses a combination of advanced lead-calcium technology to enhance performance and lifespan. Features: Longer Life: Designed for deep cycle applications, with a longer life expectancy compared to traditional batteries. Durability: Built to withstand deep discharges and heavy loads. Low Maintenance: Sealed design reduces the need for regular maintenance. Vibration Resistant: Suitable for a range of environmental conditions. Applications: Inverter Systems: Commonly used in home inverter systems for backup power. Solar Applications: Compatible with solar power setups for energy storage. Uninterruptible Power Supplies (UPS): Can be used in UPS systems for critical equipment. Performance: Cycle Life: Typically offers a good cycle life with proper charging and discharging practices. Self-Discharge Rate: Relatively low self-discharge rate, allowing for longer storage periods without significant loss of charge. Installation and Maintenance: Installation: Generally straightforward, but should be done according to manufacturer guidelines. Maintenance: Minimal; periodic checks on connections and cleanliness are recommended. Safety: Ventilation: Ensure proper ventilation during charging to avoid gas accumulation. Protection Features: Many models come with built-in protection against overcharging and short circuits. For precise specifications, including dimensions and weight, it’s best to consult the manufacturer's datasheet or product manual.

Send Message
product image
Vertiv Hiplus 80-800 KVA Online Ups

UPS Renting Services HIPULSE UPS (80-800 KVA) It is a range of uninterruptible power supply (UPS) systems manufactured by a company called HIPULSE. These UPS systems are designed to provide reliable and continuous power protection for a wide range of applications, from small to large-scale industrial and commercial environments. The HIPULSE UPS range typically covers a power capacity range of 80-800 kilovolt-amperes (kVA). Most of Benefits from Universal Power System: Features: On-Line Double C???onversion IGBT-based PWM Inverter Wide input voltage tolerance (+15 / -15%) Wide input frequency tolerance (45Hz-65Hz) Capability to handle: - High crest factor loads - 100% non-linear loads - 100% unbalanced loads Built-in maintenance bypass (Single and 1+N Models) Common battery sharing kit (optional) with 1+1 configuration Built-in maintenance bypass (Single and 1+N Models) Modular design of inverter bridge for higher rated UPS modules like 600 & 800 kVA UPS Renting Services UPS Renting Services S7400 UPS (10-400 KVA) THE S7400 UPS IS A SERIES OF UNINTERRUPTIBLE POWER SUPPLY (UPS) SYSTEMS MANUFACTURED BY AN UNDISCLOSED COMPANY. THESE UPS SYSTEMS ARE DESIGNED TO PROVIDE RELIABLE AND CONTINUOUS POWER PROTECTION FOR A WIDE RANGE OF APPLICATIONS. THE S7400 SERIES TYPICALLY COVERS A POWER CAPACITY RANGE OF 10 KVA TO 400 KVA. Features: High performance IGBT PWM(Pulse Wave Modification) technology for pure sinewave output LBS configuration for super critical loads True parallelability up to six modules Netcom kit for remote monitoring BMS Connectivity through modbus Remote alarm monitor (RAM) Hardware for Fault Diagnostic Unit (FDU), data logger and power monitoring software Communication card for dial-up monitoring UPS Series 7400 The Series 7400 UPS offers True On-line Field Proven UPS system to maximize Uptime of your Critical Application. The Series 7400 offers a wide range from 10 kVA to 750 kVA single phase systems. The Series 7400 UPS System has a proven track - record of unmatched reliability to support your sensitive and costly equipment, offering maximum availability to virtually any application. The Series 7400 is carefully designed to address the “load power factor” (0.7 lagging upwards) and “non linearity” that critical applications demand. In-built output isolation transformer To offer galvanic isolation between your critical application and the Mains, while feeding the load through the Inverter. Battery Circuit Breaker (BCB): To ensure “Safety” and to protect your “Battery Life”, unlike using DC Isolator. Usage of BCB is much safer in terms of personal hazards on a running system than a DC Isolator. Under Voltage Trip coil of BCB prevents deep-discharging of battery, which cannot be achieved by a DC Isolator. RS-232 Serial port : For carrying out on-line monitoring of Alarm and Status. Optional attachments such as IBM-AS 400 Interface Card/ Relay Interface Card help you to integrate the UPS with your network effectively. High efficiency performance High reliability to maximise system availability Handles 3:1 crest factor loads without de-rating

Send Message

Still searching for
deep discharging?