Gurugram
+918076792323

'optional lithium ion battery cabinets'

Items tagged with 'optional lithium ion battery cabinets'

product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
Lithium-ion battery repairing services

Lithium-ion battery repairing services focus on diagnosing, repairing, and refurbishing lithium-ion batteries used in various applications, such as electric vehicles, consumer electronics, and renewable energy systems. Here’s a comprehensive overview of such services: Overview of Services Battery Diagnosis Testing: Assessing the battery's health using specialized equipment to measure voltage, capacity, and internal resistance. Fault Identification: Identifying issues such as cell imbalance, dead cells, or internal short circuits. Repair Services Cell Replacement: Replacing defective cells within a battery pack to restore capacity and performance. Rebalancing: Balancing individual cells to ensure even charging and discharging, which prolongs battery life. Reconditioning: Cleaning and refurbishing battery contacts and connections to improve performance. Battery Management System (BMS) Repair BMS Testing: Checking the functionality of the BMS that monitors and manages the battery’s state. BMS Replacement: Replacing faulty BMS units to ensure safe and efficient battery operation. Battery Pack Rebuilding Repackaging: Rebuilding the entire battery pack, often using new or refurbished cells to increase capacity and lifespan. Re-encapsulation: Ensuring that the battery pack is securely encapsulated and insulated for safety. Data Recovery Data Retrieval: Recovering data from battery management systems or associated devices if they have become corrupted or lost. Common Applications Consumer Electronics: Smartphones, laptops, and tablets. Electric Vehicles: Cars, bikes, and scooters. Power Tools: Drills, saws, and other rechargeable tools. Renewable Energy Systems: Solar storage batteries and backup systems. Medical Devices: Mobility aids, monitoring devices, etc. Benefits of Repairing Lithium-Ion Batteries Cost-Effective: Often cheaper than purchasing a new battery. Environmental Impact: Reduces electronic waste by extending the life of existing batteries. Performance Restoration: Can restore batteries to near-original performance levels. Considerations Safety: Lithium-ion batteries can be hazardous; repairs should only be performed by qualified technicians with appropriate safety measures. Warranty: Check if repairing affects any existing warranty on the device or battery. Service Providers: Look for reputable service providers with good reviews and experience in lithium-ion battery technology. Typical Process Assessment: Customers bring in or ship batteries for assessment. Quote: After diagnosis, a cost estimate for repairs is provided. Repair: Upon approval, repairs are conducted, often within a specified timeframe. Testing: Post-repair testing to ensure the battery is functioning correctly. Return: The repaired battery is returned to the customer with information on care and maintenance. Finding a Service Provider Online Search: Look for local or online repair services specializing in lithium-ion batteries. Certifications: Ensure the service provider is certified and experienced in battery technology. Reviews: Check customer reviews and ratings for quality assurance. Conclusion Lithium-ion battery repairing services provide essential support for maintaining and extending the life of various battery-operated devices. By selecting a qualified service provider, customers can achieve significant savings and environmental benefits while ensuring their devices operate reliably.

Send Message
product image
Vertiv 20 Kva Ups

The Vertiv 20 kVA UPS is typically represented by models such as the Liebert GXT5. This UPS is designed for critical applications, providing reliable power protection and ensuring the continuity of operations in environments such as data centers, telecommunications, and industrial applications. Below are the key details and specifications for the Vertiv 20 kVA UPS: Key Features Double Conversion Technology: Provides a clean and stable output voltage, protecting connected equipment from power disturbances. High Efficiency: Offers efficiencies of up to 95% in double conversion mode and even higher in eco-mode, reducing energy costs. Scalability: Modular design allows for easy scalability to meet growing power needs. Flexible Configuration: Supports various input and output configurations, making it adaptable to different environments. Advanced Monitoring and Management: Equipped with an LCD display for real-time monitoring and management of UPS status and performance. Battery Management: Intelligent battery management features extend battery life and optimize performance. Compact Design: Space-saving design suitable for various installation environments. Technical Specifications Capacity: 20 kVA / 20 kW Input Voltage: Typically supports 208 V or 400 V three-phase systems Output Voltage: Configurable options, commonly 120 V or 208 V Form Factor: Tower or rack-mounted options available Battery Type: Sealed lead-acid or lithium-ion options, depending on the model Runtime: Configurable based on battery size and load; external battery cabinets can be added for extended runtime Communication Ports: USB, RS-232, and optional SNMP for network management Applications Data Centers: Protects critical IT infrastructure from power interruptions. Telecommunications: Ensures continuous operation of communication systems. Industrial Applications: Safeguards sensitive equipment in manufacturing and processing environments. Conclusion The Vertiv 20 kVA UPS is a reliable solution for businesses that require uninterrupted power supply and high efficiency. Its advanced features and flexible configurations make it suitable for a wide range of applications, ensuring that critical systems remain operational during power disturbances. For specific model details, it is advisable to consult the official Vertiv documentation or a local distributor.

Send Message
product image
9PX Lithium-ion UPS

The Eaton 9PX Lithium-ion UPS is designed for mission-critical applications, offering an extended battery life of 8 to 10 years. It features power ratings from 1 to 6 kVA, advanced ABM technology for battery longevity, and flexible configurations for both rack and tower setups. Key Specifications: Power Ratings: 1 kVA to 6 kVA Battery Type: Lithium-ion with 8-10 years life expectancy Form Factor: Rackmount and tower options Connectivity: Multiple external battery module options Warranty: 5 years on electronics and internal batteries Key Features: ABM Technology: Extends battery service life by up to 50% Remote Management: Capable of remote monitoring and management Compact Design: Space-saving design suitable for various environments Output: Pure sine wave output for sensitive equipment Performance and Reliability: Run Time: Varies based on load; designed for high availability Noise Level: Operates quietly, suitable for office environments

Send Message
product image
Battery Replacement In Faridabad

Battery replacement is a common maintenance task for various types of power systems, including solar systems, electric vehicles (EVs), UPS (uninterruptible power supplies), and other battery-powered devices. The process and requirements can vary depending on the type of battery used. Below, I'll provide an overview of common types of batteries and the replacement process for each. Types of Batteries and Their Replacement Process 1. Lead-Acid Batteries Common Types: Flooded Lead-Acid (FLA): Requires regular maintenance, such as adding distilled water to the cells. Sealed Lead-Acid (SLA): Maintenance-free and does not require water addition. Absorbent Glass Mat (AGM): A type of SLA battery where the electrolyte is absorbed in glass mats. Gel Lead-Acid Batteries: These use a gel electrolyte instead of liquid and are often used in deep-cycle applications. Replacement Process: Turn off the system: Ensure the system is powered off, and disconnect it from the grid or load. Safety precautions: Wear protective gear, including gloves and goggles, since lead-acid batteries contain sulfuric acid and produce flammable gases. Disconnect terminals: Always disconnect the negative terminal first, followed by the positive terminal. Remove old batteries: Lift and remove the batteries carefully, especially if they're heavy. Clean battery terminals: Inspect and clean the terminals, and remove any corrosion using a mixture of baking soda and water. Install new batteries: Place the new battery in the same configuration as the old one, then reconnect the positive terminal first, followed by the negative terminal. Check the system: Power on the system and check the voltage and charging status. Maintenance Tips: Regularly check the electrolyte levels in flooded batteries. Clean terminals and ensure the battery box or tray is secure. 2. Lithium-Ion Batteries Common Types: Lithium Iron Phosphate (LiFePO4): Common in solar systems and EVs due to its high efficiency and long lifespan. Lithium Nickel Manganese Cobalt (NMC): Found in high-power applications such as EVs and power tools. Lithium Manganese (LiMn2O4): Often used in EVs, power tools, and other high-power applications. Lithium Polymer (LiPo): Typically used in small devices like drones, power banks, and mobile phones. Replacement Process: Turn off the system: Disconnect the power source or system. Safety precautions: Lithium-ion batteries are generally safe but should be handled carefully to avoid overheating, short-circuiting, or damage. Disconnect terminals: Start by disconnecting the negative terminal followed by the positive terminal. Remove the old battery: Lithium-ion batteries are typically lighter and easier to replace than lead-acid batteries. Install the new battery: Place the new battery in the same orientation and secure it. Reconnect terminals: Attach the positive terminal first, followed by the negative terminal. Check the system: Power on the system, and monitor the battery's charging and discharging to ensure it's working properly. Maintenance Tips: Lithium-ion batteries require minimal maintenance, but always ensure they are charged within the recommended voltage range. Battery Management System (BMS) should be monitored to ensure proper functioning and safety. Conclusion: Battery replacement depends on the type of battery and the application. For solar systems, lead-acid, and lithium-ion are the most common, each requiring specific attention during installation. Lead-acid batteries need regular maintenance, especially flooded types. Lithium-ion batteries are easier to replace and have a longer lifespan with minimal maintenance. Always follow safety guidelines when handling batteries, especially lead-acid or lithium-ion, and ensure proper recycling and disposal of old batteries to avoid environmental hazards.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message
product image
Vertiv Liebert PS15 UPS

The Vertiv Liebert PS15 UPS is a model of Uninterruptible Power Supply (UPS) designed to provide reliable power protection for various types of critical equipment, such as servers, networking devices, and other essential electronics. Here's a general overview of its key features: Key Features: Power Capacity: The Liebert PS15 typically offers a 15kVA (kilovolt-ampere) power capacity, making it suitable for medium to large-sized IT and data center applications. Form Factor: It's available in both tower and rack-mounted configurations, providing flexibility in installation based on the user's space requirements. True Online Double-Conversion Technology: The UPS employs a double-conversion topology, which provides continuous, clean power to connected devices by isolating them from input power fluctuations, ensuring consistent voltage output. High Efficiency: The Liebert PS15 often features advanced efficiency modes to reduce energy consumption, particularly in non-critical load conditions. Scalability: Some models in this series can be expanded with external battery cabinets, providing longer backup runtimes when needed. Monitoring & Management: Equipped with advanced monitoring options, the UPS can be connected to networked management systems, offering remote monitoring, control, and alerting for efficient power management. Battery Technology: The unit uses valve-regulated lead-acid (VRLA) or lithium-ion batteries, depending on the configuration. VRLA batteries are the most common, though lithium-ion options may offer longer lifespan and better energy density. Input and Output Voltage: The UPS typically supports a wide input voltage range and provides stable 208V/400V output, depending on the model configuration. Safety Features: Includes built-in surge protection, overload protection, and short-circuit protection for both the unit and connected equipment. Applications: IT Infrastructure: Ideal for protecting servers, storage devices, and networking equipment in small and medium-sized data centers. Telecommunication: Provides power protection for critical telecommunications equipment. Healthcare: Ensures that sensitive medical equipment continues to operate without interruption. Manufacturing and Industrial: Often used in industries where downtime due to power failure is not an option. Maintenance and Support: Vertiv offers various support options for its UPS systems, including extended warranties, remote diagnostics, and on-site service.

Send Message
product image
20 KVA UPS

The Vertiv Liebert GXT5-20KMVRT11UXLN is a 20kVA (20000VA) rack/tower UPS from the Liebert GXT5 series. The GXT5 series provides high-performance, reliable power protection for critical equipment in IT environments such as data centers, server rooms, and telecommunications. The Liebert GXT5-20KMVRT11UXLN model is specifically designed to deliver high availability, efficient energy management, and flexible configurations (tower or rackmount). Here\'s a detailed breakdown of the Vertiv Liebert GXT5-20KMVRT11UXLN UPS: Key Features of the Vertiv Liebert GXT5-20KMVRT11UXLN: 1. Power Rating and Capacity: Power Rating: 20kVA / 20000VA Output Power: 16000W (16kW) at 208V (depending on load conditions) This provides robust protection for high-density IT loads, such as servers, network switches, telecom systems, and critical infrastructure. 2. Voltage Configuration: Input Voltage: 208V (for 3-phase input) The GXT5 can also be configured to operate at 120V AC (single-phase) when needed, making it flexible for different types of equipment and power requirements. 3. Topology: On-Line Double-Conversion: The GXT5 series uses double-conversion (On-Line) topology, providing the highest level of protection. This topology ensures that the UPS continuously filters and conditions the input power and provides a pure sinewave output to sensitive loads, completely isolating the load from power disturbances. Zero transfer time from utility power to battery power ensures no downtime for connected equipment. 4. Waveform Type: Pure Sinewave Output: The UPS produces a clean, pure sinewave output which is essential for powering sensitive IT equipment without distortion or interference. 5. Battery Type and Runtime: Battery Type: Typically uses Sealed Lead-Acid (SLA) or VRLA (Valve-Regulated Lead-Acid) batteries, which require little maintenance and are commonly used in high-performance UPS systems. External Battery Support: The Liebert GXT5-20KMVRT11UXLN supports external battery packs (available separately) to extend runtime for longer periods, making it ideal for power-hungry or mission-critical applications. Charging Time: Typically, it takes about 4-6 hours to recharge the batteries to 90% capacity. 6. Runtime (Backup Time): The battery backup time will vary depending on the load. Here are some estimates: At 50% load (10kVA/10000W): Backup time could range between 15 to 25 minutes. At full load (20kVA/16000W): Backup time would be much shorter, around 5-10 minutes depending on configuration and battery capacity. Extended runtime can be achieved with additional external battery cabinets. 7. Cooling: Fan-assisted cooling ensures optimal temperature management during operation. The UPS is designed to operate efficiently even in environments with higher ambient temperatures. 8. Form Factor: Rackmount and Tower: The Liebert GXT5-20KMVRT11UXLN offers a flexible design, enabling it to be deployed as either a tower or a rackmount UPS. Rackmount form factor: 3U (for the rack version), designed for 19-inch rack installations. The rackmount option allows easy integration into standard server racks or data center environments. 9. Energy Efficiency and Certifications: Energy Star Certification: The Liebert GXT5 is Energy Star certified, meaning it meets high-efficiency standards and minimizes energy consumption during operation. It also has low total cost of ownership (TCO), thanks to its energy-efficient operation. High Efficiency Mode (Eco Mode): The UPS features an eco mode for high-efficiency operation during normal conditions, further reducing energy consumption when conditions permit. 10. Interfaces and Monitoring: LCD Display: The UPS comes with an LCD display that provides real-time information on key parameters such as input/output voltage, battery charge, load levels, and alarm status. Connectivity: USB, Serial, and Network Ports: The GXT5-20KMVRT11UXLN has USB and serial communication ports for local management and monitoring. SNMP Slot: It comes with an optional SNMP card for remote monitoring, allowing you to manage the UPS from anywhere on the network. Dry Contact Interface: Available for integration with building management or alert systems. 11. Advanced Features: Automatic Transfer Switch (ATS): The Liebert GXT5 can support an optional ATS for automatic switching between the utility power and the UPS in the event of a failure, ensuring seamless power continuity. Overload and Short-Circuit Protection: Protects the UPS and connected loads in case of an overload or short circuit by gracefully shutting down the system or providing alarms. Smart Battery Management: The system features battery monitoring to optimize charging cycles and extend the life of the battery bank. Battery health diagnostics help predict and prevent potential failures. Audible Alarms: Provides alerts for low battery, overload, power failure, and other system faults, ensuring that you’re always aware of the UPS condition.

Send Message
product image
6 KVA POWERBANK

The Vertiv 6kVA PowerBank UPS is typically part of Vertiv's On-Line or Line-Interactive power protection solutions that integrate battery backup systems designed to maintain a continuous supply of power in the event of an outage. These UPS systems are ideal for applications where consistent power quality and uptime are critical, such as for medium to large businesses, IT infrastructure, and high-demand environments like data centers. Although "PowerBank" is a brand name or marketing term used by Vertiv for specific models of UPS systems (often focused on extended battery runtimes or integrated external batteries), detailed product specifications and the exact model can vary. Below is a general overview of the Vertiv 6kVA PowerBank UPS based on the series features typically associated with Vertiv's offerings. Key Features and Specifications: 1. Topology: Double Conversion On-Line: Provides the highest level of protection by continuously filtering and conditioning the incoming utility power. It delivers pure sinewave output, making it suitable for sensitive equipment that requires high-quality power. The On-Line topology ensures zero transfer time in case of power failure because the UPS system is always supplying power from the inverter. 2. Power Rating: 6kVA / 6000VA (Provides backup for medium-sized systems or higher power applications like small-to-medium server rooms, network systems, and critical equipment). 3. Output Power: Output Power: 4.8 kW to 5.4 kW (depending on load and configuration) 4. Input and Output Specifications: Input Voltage: 110V - 300V, wide input range for handling fluctuations without switching to battery mode. Output Voltage: 230V ± 2% (standard in most countries) 5. Waveform Type: Pure Sinewave Output: Ensures that the connected equipment receives a smooth and continuous power supply without the distortions found in some lower-quality UPS systems. 6. Battery Configuration: Battery Type: Typically Sealed Lead-Acid (SLA) or Valve-Regulated Lead-Acid (VRLA) batteries. Battery Capacity: Typically, 12V batteries with 18Ah, 24Ah, or higher capacities. The system may include external battery modules (Battery Banks) for extended runtime, making it suitable for larger power demands and longer backup times. External Battery Packs: Some models support additional external battery cabinets, which allow the UPS to run longer during extended outages. This is especially important for environments where power failures may last for an extended period. 7. Charging Time: Typically, the system will fully recharge in around 4-6 hours, depending on battery size and environmental conditions. 8. Backup Time (Runtime): The backup time can range from 20 minutes to several hours, depending on the load. For example, a 50% load (about 3 kVA or 3000W) will generally offer a longer runtime. A full load of 6kVA will typically provide 10-15 minutes of backup time. If the UPS is configured with external battery packs, the runtime can be extended for much longer periods, making it ideal for critical systems that require extended protection during power outages. 9. Cooling System: The UPS is equipped with fan-assisted cooling to ensure efficient heat dissipation and prevent overheating during extended use. 10. Display and Monitoring: LCD Display: Displays real-time information about UPS status, battery health, load capacity, input/output voltages, battery runtime, and other important parameters. Audible Alarms: Alerts for conditions such as low battery, overload, power failure, and system faults. Smart Battery Management: Ensures optimal battery health and extends the lifespan of the UPS. 11. Connectivity and Interfaces: USB/Serial Ports: For communication with a connected computer or server for monitoring and management. SNMP Slots: Some models may offer SNMP (Simple Network Management Protocol) support for remote monitoring and management via networked devices. Dry Contact Interface: Allows integration with building management or alert systems. Optional Software: Available for automated shutdown in the event of prolonged power outages, and event logging. 12. Form Factor: Tower or Rackmount (depending on the specific model and user preferences). Some models are available in rackmount configurations for server rooms and data centers, while others are more suitable for a tower setup. 13. Additional Features: Overload Protection: Safeguards against exceeding the UPS's rated capacity. Short-Circuit Protection: Provides defense against electrical faults. Automatic Voltage Regulation (AVR): Ensures that the UPS compensates for voltage fluctuations (e.g., brownouts or overvoltages) without resorting to battery backup.

Send Message

Still searching for
optional lithium ion battery cabinets?