Gurugram
+918076792323

'solar energy usage'

Items tagged with 'solar energy usage'

product image
5 kW solar system installed at nooh school

Universal Power team has installed a 5 kW solar system at nooh school Key Details of the 5 kW Solar System Installation at Nooh School: Solar Power Generation: A 5 kW system typically generates around 20-25 kWh per day depending on sunlight hours and weather conditions. Annual Energy Production: The system could produce around 7, 300 to 9, 125 kWh annually, which can cover a significant portion of the school\'s energy needs. System Components: Solar Panels: Typically, 15-20 panels with a capacity of around 250W-330W each. Inverter: A 5 kW inverter is used to convert the DC power produced by the panels into AC power. Mounting Structure: The solar panels are mounted on the roof or ground, depending on the school\'s infrastructure. Grid Connection: The system is likely connected to the grid, allowing excess energy to be fed back into the grid via net metering, helping reduce electricity costs for the school. Benefits for Nooh School: Cost Savings: The school will benefit from reduced electricity bills by offsetting its grid power usage with solar energy. Sustainability: The system will contribute to a reduction in carbon emissions, helping the school be more environmentally responsible. Educational Opportunity: The solar installation can serve as a live example for students, providing them with a practical demonstration of renewable energy technology. Maintenance: The system requires minimal maintenance, with occasional cleaning of the panels to ensure optimal performance. Panel Lifespan: Solar panels generally last around 25-30 years, with a slight decline in efficiency over time. Inverter Lifespan: Inverters typically last around 10-15 years before needing replacement. Conclusion: The 5 kW solar system installed by Universal Power Team at Nooh School will provide long-term benefits, including reduced electricity costs, environmental sustainability, and educational opportunities for students to learn about solar energy. If more detailed information is needed, contacting Universal Power Team or the school would provide the specifics of the installation.

Send Message
product image
10 kW solar system installed at Parashuram Eye Hospital

10 kW solar Universal Power team has installed a 10 kW solar system at Parashuram Eye Hospital. Key Details of the 10 kW Solar System Installation: Solar Power Generation: A 10 kW system typically generates about 40-50 kWh per day, depending on the location and weather conditions. This translates to 14,600 to 18,250 kWh annually, which will help the hospital meet a significant portion of its energy needs. System Components: Solar Panels: Around 25-30 panels, each with a capacity of 330W-400W. Inverter: A 10 kW inverter is used to convert the DC electricity from the panels into AC electricity for hospital use. Mounting System: Panels are mounted on the roof or ground depending on the hospital's infrastructure. Grid Connection: The system is connected to the grid, allowing the hospital to export excess energy to the grid through net metering. Benefits for Parashuram Eye Hospital: Cost Reduction: The solar system will reduce the hospital's dependence on grid electricity, leading to lower monthly electricity bills. Sustainability: The hospital will be contributing to environmental sustainability by utilizing renewable energy, which helps reduce its carbon footprint. Energy Independence: The system ensures a reliable power source, especially during peak hours or grid outages. Maintenance: Solar panels require minimal maintenance, with periodic cleaning to ensure maximum efficiency. Lifespan: Solar panels typically last 25-30 years, and the inverter may need replacement after 10-15 years. Conclusion: The installation of a 10 kW on-grid solar power system at Parashuram Eye Hospital by Universal Power Team will provide long-term benefits in terms of cost savings, energy independence, and environmental impact. It’s an excellent step towards sustainable energy usage for the hospital. If you need more specific details about this installation, it would be best to contact Universal Power Team or the hospital directly.

Send Message
product image
solar panel

A solar panel is a device that converts sunlight into electricity using photovoltaic (PV) cells. Here's a quick summary: Types: Monocrystalline: High efficiency, long lifespan, more expensive. Polycrystalline: Lower efficiency, cheaper. Thin-film: Lightweight, flexible, lower efficiency, cheaper. How It Works: Sunlight hits the PV cells, generating electrical current (DC), which is converted into AC power by an inverter for household use. Benefits: Renewable energy source. Reduces electricity bills. Environmentally friendly (low carbon footprint). Low maintenance. Can be paired with battery storage for energy independence. Lifespan: Most panels last 25-30 years with minimal maintenance. Efficiency: Varies from 10% to 22%, with monocrystalline being the most efficient. Installation: Requires site assessment, permits, and professional installation.

Send Message
product image
HPL Lithium-Ion Battery Energy Storage System

The HPL Lithium-Ion Battery Energy Storage System is a type of energy storage technology that uses lithium-ion batteries to store and manage electrical energy. These systems are typically used to store excess energy generated from renewable sources like solar and wind or from the grid, and release it when needed to help stabilize energy supply and demand. Here’s a breakdown of the key components and features that are generally associated with Lithium-Ion Battery Energy Storage Systems (BESS), including those from HPL or similar manufacturers: Key Features: Lithium-Ion Technology: Lithium-ion batteries are favored for their high energy density, long cycle life, and efficient performance. They are commonly used in applications like electric vehicles, grid storage, and consumer electronics. Energy Storage: These systems store electrical energy in lithium-ion battery packs and release it during periods of high demand, or when renewable energy production is low (e.g., on cloudy days for solar energy systems). Efficiency: Lithium-ion batteries typically offer high efficiency in terms of energy conversion, with round-trip efficiencies often exceeding 90%. This means that most of the stored energy is usable when discharged. Modular Design: HPL and other manufacturers often design their battery systems with modularity in mind. This means that the system can be scaled to fit a variety of needs, from residential to commercial and industrial applications. Grid Integration: These energy storage systems are commonly integrated with the electrical grid. They can help balance grid frequency and voltage, provide backup power during outages, and support the integration of renewable energy sources by smoothing fluctuations in supply. Battery Management System (BMS): The BMS ensures the safety, performance, and longevity of the battery by monitoring the state of charge (SOC), temperature, and other critical parameters. It can also prevent overcharging, over-discharging, and overheating. Applications: Residential Use: Homeowners can use these systems to store solar energy for use during the night or power outages. Commercial & Industrial Use: Businesses can use these systems to reduce demand charges or to provide backup power. Grid-Scale: Large energy storage systems can be used to stabilize the grid and facilitate the integration of renewable energy at a larger scale. Advantages: Sustainability: By storing renewable energy, these systems contribute to reducing carbon footprints and dependence on fossil fuels. Flexibility: They can be used in a wide range of applications, including residential, commercial, and large-scale energy storage. Cost Savings: Especially in commercial applications, they can help reduce energy costs by managing peak demand and reducing reliance on expensive grid power during peak periods.

Send Message
product image
10 kW solar system installed at M3M

Universal Power team has installed a 10 kW solar system 18 panel at M3M Key Details of the Installation: Solar System Size: 10 kW refers to the capacity of the solar system. This means the system is designed to generate up to 10 kilowatts (kW) of power under optimal sunlight conditions. Number of Panels: 18 solar panels have been installed. To estimate the power output of each panel, we can divide the system\'s total capacity by the number of panels. 10 kW / 18 panels = approximately 555 watts per panel. This indicates that each panel is likely rated around 555W, which is a common wattage for high-efficiency solar panels used in residential and commercial systems. Location – M3M: M3M could be a residential complex, office building, or another commercial facility. Without more specific information, M3M could refer to the area or project where the installation took place. If it’s a large-scale installation, such as for an office or commercial building, the solar panels are likely being used to reduce energy costs and carbon footprint. Energy Production: The energy output of the system will depend on several factors, including the amount of sunlight received, panel orientation, and local weather conditions. In an area with good sunlight, a 10 kW system could produce roughly 40-50 kWh per day on average, depending on the solar irradiance and hours of sunlight in that region. Over a year, this could amount to around 14, 600 to 18, 250 kWh of electricity. Purpose: The solar power system could be installed for various reasons: To reduce energy bills by using clean solar energy. To support sustainability goals, reduce carbon emissions, and make the building or facility more energy-efficient. To provide backup power or support the grid, especially in commercial or industrial settings. Benefits of a 10 kW Solar System: Reduced Electricity Costs: By producing energy from the sun, the system reduces reliance on grid power, thus lowering electricity bills over time. Environmental Impact: The system helps reduce carbon footprints by utilizing renewable energy instead of fossil fuels. Increased Property Value: Properties with solar installations are often valued higher due to the long-term savings on energy costs. Government Incentives: Depending on the region, there may be tax credits, subsidies, or incentives available for installing solar energy systems.

Send Message
product image
Amaron Quanta 12V 130Ah Battery In Bhiwadi

The Amaron Quanta 12V 130Ah batteries are lead-acid batteries typically used for solar power storage, backup power systems, and other applications that require reliable energy storage. Here's a detailed overview of this battery: Key Features of Amaron Quanta 12V 130Ah Battery: Battery Type: Lead-Acid: This is a type of flooded or sealed (VRLA) lead-acid battery, suitable for deep cycle applications. 12V System: Designed for systems that operate on a 12V DC supply, often used in small-scale solar energy systems, inverters, and backup power setups. Capacity: 130Ah (Ampere-hour): This indicates the battery’s storage capacity. It means the battery can deliver 130 amps for 1 hour or 1 amp for 130 hours at a nominal voltage of 12V. For example, if the system uses 1A of current, the battery will last for around 130 hours before needing a recharge. Applications: Solar Power Systems: To store energy generated by solar panels. UPS (Uninterruptible Power Supply): Provides backup during power outages. Off-Grid Systems: Stores energy for homes or businesses in remote areas. Electric Vehicles and RVs: Sometimes used for backup and auxiliary power. Charging and Discharging: Charging: The battery can be charged through solar panels, inverters, or a regular charger. It is recommended to avoid deep discharges to extend the battery life. Discharging: It should not be discharged fully for longevity. Typically, a depth of discharge (DoD) of 50% to 70% is ideal for long-term use. Battery Life: Cycle Life: Typically, a lead-acid battery like the Amaron Quanta 12V 130Ah can last around 3-5 years, depending on usage and maintenance. Proper charging and maintenance (like keeping the terminals clean and ensuring adequate ventilation) can improve the lifespan of the battery. Advantages: Reliable and Cost-Effective: Lead-acid batteries are typically less expensive than other types of batteries, like lithium-ion. Widely Available: Amaron is a well-known brand, and their batteries are widely available and easy to replace. Maintenance: Flooded Lead-Acid: If it’s a flooded type, you may need to periodically check the water levels and top up with distilled water. VRLA (Valve-Regulated Lead-Acid): If it's a sealed type, it requires less maintenance as it’s sealed and does not need water refills. Specifications: Voltage: 12V Capacity: 130Ah Weight: Around 40-45 kg (approx.), depending on the specific model and construction type. Dimensions: Varies by model, but typically it is about 410mm (L) x 175mm (W) x 240mm (H). Conclusion: The Amaron Quanta 12V 130Ah battery is a good choice for off-grid solar systems, backup power applications, or any system requiring long-lasting energy storage. It offers a solid balance of performance, cost-effectiveness, and reliability. Proper care and maintenance will ensure it provides reliable service for years to come.

Send Message
product image
AMARON QUANTA CELLS

The AMARON Quanta battery series is designed for industrial applications, particularly for UPS systems. Here are some key specifications and details: Type: Sealed Maintenance-Free (SMF) Battery Nominal Voltage: 12V Capacity Options: Ranges from 12Ah to 200Ah Design Features: Heavy-duty corrosion-resistant alloy, predictable performance, and reliability. Dimensions: Varies by model; for example, the 200Ah model measures approximately 541 x 232 x 208 mm. Weight: Approximately 62 kg for the 200Ah model. Applications: Ideal for UPS systems, industrial equipment, and other critical power backup needs. For detailed specifications, you can refer to the product catalog or specific data sheets available online. AMARON QUANTA CALLS - Detailed Overview The AMARON Quanta series offers a range of high-performance batteries suitable for various applications, particularly in power backup systems. Below are the key details: Battery Specifications Type: Sealed Maintenance-Free (SMF) Battery Nominal Voltage: 12V Capacity Options: 12Ah 18Ah 26Ah 42Ah 65Ah 84Ah 100Ah 125Ah 150Ah 160Ah 200Ah Weight: Approximately 62 kg for the 200Ah model Dimensions: 200Ah model: 541 x 232 x 208 mm Other models vary in size Key Features Durability: Designed to withstand harsh environmental conditions and heavy usage. Rugged construction with corrosion-resistant materials. Performance: High discharge rates with low internal resistance. Excellent charge acceptance and fast charging capabilities. Maintenance: Low maintenance requirements due to the sealed design. No need for regular electrolyte checks or refills. Applications Industrial Use: Suitable for UPS systems, data centers, and critical power applications. Renewable Energy: Effective for solar energy storage and backup power systems. Warranty and Support Warranty: Typically comes with a manufacturer's warranty, often around 1 year. Customer Support: Available through various retailers and manufacturers for inquiries and assistance. Environmental Considerations Operating Temperature: Functions effectively in a wide temperature range, typically from -20°C to +50°C. Safety Features: Equipped with safety vent seals to prevent overpressure and leakage. The AMARON Quanta series is recognized for its reliability and efficiency, making it a preferred choice for users requiring dependable power solutions.

Send Message
product image
12v200ah battery

The Amaron Quanta 12V 200Ah battery is a high-performance sealed maintenance-free (SMF) battery designed for various applications, particularly in UPS systems. Here are the key specifications and details: Specifications: Voltage: 12V Capacity: 200 Ah (Ampere-hours) Type: Sealed Maintenance-Free (SMF) Dimensions: Typically around 522mm x 240mm x 218mm (L x W x H) Weight: Approximately 60 kg Key Features: Spill-Proof Design: The battery is spill-proof, allowing for flexible installation in various positions. High Power Density: Optimizes space usage, making it suitable for installations with limited area. Quick Recharge Capability: Lower internal resistance enables faster recharge times. Long Life Cycle: Designed for extended service life, reducing the frequency of replacements. Applications: Uninterruptible Power Supply (UPS): Ideal for providing backup power to critical systems. Telecommunications: Supports communication systems that require reliable power. Renewable Energy Systems: Suitable for solar power storage and other renewable energy applications. Industrial Equipment: Ensures machinery and equipment remain operational during power outages. Advantages: Maintenance-Free Operation: No regular maintenance required, enhancing user convenience. Robust Construction: Built to withstand harsh conditions and provide consistent performance. Environmentally Friendly: Manufactured with eco-friendly materials and processes. The Amaron Quanta 12V 200Ah battery is an excellent choice for those seeking a reliable and efficient power source for various applications, particularly in environments where performance and dependability are crucial.

Send Message
product image
Battery

The Amaron Quanta 12V 12Ah battery is part of Amaron's lineup of high-performance lead-acid batteries, designed for various applications including uninterruptible power supply (UPS) systems, solar energy storage, and other backup power requirements. Here are the key details and specifications of the Amaron Quanta 12V 12Ah battery: 1. General Specifications: Model: Amaron Quanta 12V 12Ah Voltage: 12V (nominal) Capacity: 12Ah (Ampere-hours) Chemistry: Lead-Acid (Flooded or VRLA - Valve Regulated Lead Acid, depending on the specific model variant) Type: Sealed Lead Acid (SLA) or VRLA (Valve-Regulated Lead Acid) 2. Dimensions: Length: Approximately 151 mm Width: Approximately 65 mm Height: Approximately 94 mm Weight: Approximately 3.8 kg (8.38 lbs) 3. Applications: UPS Systems: Ideal for providing backup power to critical systems like computers, telecom equipment, and other sensitive electronics. Solar Energy Storage: Can be used in solar applications to store excess energy for later use. Electric Vehicles: Sometimes used in smaller electric vehicle or mobility scooter systems. Alarm and Security Systems: Provides backup power to alarm systems, CCTV, and other security devices. Emergency Lighting: Often used in emergency lighting setups for buildings, factories, and other premises. 4. Performance Features: Cycle Life: The Amaron Quanta 12V 12Ah battery generally offers around 300-500 charge/discharge cycles (varies based on usage, charge/discharge depth, and environmental conditions). Discharge Current: Able to provide a high discharge current (depending on load), making it suitable for short-term high-power loads. Recharge Time: Typically around 6-8 hours for a full recharge from full discharge, but this can vary depending on the charger and charging conditions. Self-Discharge Rate: Low self-discharge rate, meaning it holds charge for a long period when not in use. 5. Key Features: High Reliability: Designed for reliable performance, making it a trusted option for various backup power systems. Safety: Valve-Regulated Lead-Acid (VRLA) design, meaning it is sealed and maintenance-free under normal operating conditions. Durability: Offers robust construction for longer-lasting performance even under challenging environmental conditions. Leak-Proof Design: The VRLA design ensures that the battery is leak-resistant, which is particularly important for use in enclosed spaces. Low Maintenance: Does not require regular water refilling like traditional flooded lead-acid batteries. 6. Charging Voltage and Current: Float Voltage: Around 13.5V to 13.8V. Charge Voltage (Bulk): Typically around 14.4V to 14.7V (depending on the charger and temperature). Charge Current: Around 0.1C to 0.3C (for a 12Ah battery, this translates to a charge current of about 1.2A to 3.6A). 7. Temperature Range: Operating Temperature: Generally from -15°C to 50°C, but the optimal temperature range for performance is usually between 20°C to 25°C. Storage Temperature: For best longevity, store the battery at temperatures between 15°C to 25°C. 8. Warranty: Warranty Period: Amaron Quanta batteries typically come with a warranty period of 1-2 years, depending on the region and specific seller's terms. 9. Advantages: Cost-Effective: Amaron Quanta batteries are considered affordable yet reliable for various low to medium capacity backup systems. Wide Availability: These batteries are widely available in many regions and are popular due to their reputation for consistent performance. Maintenance-Free: VRLA technology means no need for regular maintenance, unlike flooded batteries. 10. Safety Considerations: Ventilation: While sealed, it's important to ensure that the battery is placed in a well-ventilated area to prevent the buildup of gases. Avoid Deep Discharge: Like most lead-acid batteries, it is not recommended to discharge the battery below 50% of its total capacity frequently, as this can shorten its lifespan. Proper Charging: Always use a proper charger designed for lead-acid batteries, as improper charging can lead to overcharging or undercharging, which will reduce battery life. 11. Comparison with Other Batteries: Compared to other 12V 12Ah batteries, the Amaron Quanta typically offers good cycle life, consistent performance, and a strong reputation for reliability. It is one of the more affordable options in its class, which makes it a good choice for cost-conscious consumers looking for backup power. Conclusion: The Amaron Quanta 12V 12Ah is a reliable and efficient lead-acid battery suitable for a variety of applications, from backup power systems to solar storage. It offers robust performance, minimal maintenance, and a reasonable lifespan with proper care. It's an excellent choice if you're looking for a cost-effective power solution for home or small business applications.

Send Message

Still searching for
solar energy usage?